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. SUMMARY

"“The research completed under the contract F44620-75-C-0064
"Research in Seismology” during the period 1 July 1977 - 31
December 1977 falls within the two broad topics of (1) Seismic
source mechanisms and (2) Seismic wave propagation. The
specific research “tasks within each category have broad
applicability to the problem of discrimination of earthquakes
from underground nuclear explosions, with particular emphasis
on the Asian continent.

-Source mechanism investigations included detailed studies
of several earthquakes in eastern Turkey from the standpoint
of field and teleseismic observations and of precursory
phenomena (Toks8z et al., 1977, 1978; Tcks8z and Arpat, 1977).
Wave propagation work included studies of attenuation
mechanisms in rock (Johnston et al., 1978) and the application
of a technique for simultaneous inversion of surface wave
attenuation and phase velocity information to data from
several continental and oceanic paths (Lee, 1977; Lee and
Solomon, 1978).

Details of these studies are given in the preprints and
abstracts in the following sections. A list of publications
completed under the contract during the reporting period

is also included:
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2. SEISMIC SOURCE MECHANISMS

STUDIES OF PREMONITORY PHENOMENA PRECEDING
LARGE EARTHQUAKES IN EASTERN TURKEY

M. Nafi Toksz (Dapt. of Earth and Planetary
Scicnces, Massachusetts Institute of Techno
Cambridge, Mass. 02139)

Esen Arpat (M.T.A. Institute, Ankara, Turkey)

Two destructive earthquakes occurred in Eas
Turkey on 5 September 1975 (g = 6.7) and 24
November 1976 (Mg = 7.3). On-site studies we
carried out immediately after each earthquake
Both earthquakes had observable fault traces
many villages located directly over or very n
the fault trace. The mechanism of the 1975
earthquake was a thrust (30 km fault length)
and that of the 1976 earthquake was strike-sl

in the epicentral region of either event.
Many villagers were interviewed to determin

Both events occurred at about mid-day. Many
residents of affected villages raise livestoc
or have farm animals.

Before the 1976 earthquake there were corro
rated reports of thunder-like noises (possibl
due to very small foreshocks) at the epicente
There was at lcast one case of increased wate
flow from a spring near the fault at least on
day before the earthquake. Behavior of
domestic and farm animals prior to the earthq

! " was investigated extensively by interviewing
villagers and shepherds. There were no con-
firmed observations of unusual behavior of fa
animals, outdoors or indoors, prior to the
earthquake. However, barking or howling of d
a few hours to a fcw minutes before the earth
was widely observed.

During the night preceding the 1975 earthqu
a brightening of the sky over a wide area was
reported by otservers both in the epicentral
region and by geologists about 250 km away.
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SOURCE PROPERTIES OF THE 1976 EARTHQUAKE
IN E. TURKEY: A COMPARISON OF FIELD DATA AND

TELESEISMIC RESULTS

M. Nafi Toks®z and John Nabelek

Department of Earth and Planetary Sciences
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

and

Esen Arpat

M.T.A. Institute
Ankara, Turkey

October 1977
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Determining seismic moment and source parameters independently

from geological observations in the field, and from seismic

observations at teleseismic distances enables us to test the

validity of source models.

The Eastern Turkey €arthquake on 24 Nov. 1976 (0.T. 12:22:18.3
G.M.T., Mg = 7.3) had a clearly visible fault trace and measurable
displacements. The seismic source properties of this earthquake
can be determined from field observations and compared with those
determined from teleseismic observations. In this paper we
describe the earthquake source in terms of observed faulting

and the source parameters based on body and surface waves.

Field Observations

The earthquake epicenter (39.3°N, 43.7°E) is to the north
of a possible SE extension of the N. Anatolian fault trace
through Lake Van. The connection of this earthquake fault with
those in Iran is not clear, although there are a number of
right-handed, strike-slip faults in Iran (branches of the North
Tabriz fault) extending toward the Turkish border (Berberian,
1976 .

The fault break was visible for about 55 km and was
mapped (Fig. 1). Photographs in Fig. 2 illustrate the faulting.
The motion was almost purely right-lateral, strike-slip. The
surface trace has a strike of about N70°W in the central and

western side and it bends somewhat east of galdiran and has an




azimuth of about N45°W at the east end. The fault comes to
an abrupt end under mountains in the west. At the eastern end
the surface displacements become smaller gradually and the
fault trace disappears toward the Iranian border. The observed
horizontal displacements are more than 3 meters (330-350 cm)
in the west, about 250 cm in the central regions and less to
the east. The observed dip is nearly 90°. There are vertical
displacements with inconsistent direction, generally about 50
cm, observed locally in several areas. The southward tilt of
Lake Van, measured from water level marks, indicates a slight
uplifting of the southern block. From the surface displacements,
it appears that faulting may have started close to the west
end and propagated to the east. The reported duration of
t* severe shaking in Van (90 km to the SE, along an azimuth normal
; to the strike) was about 17 sec, consistent with a fault length
of about 50-60 km.

Seismic moment and stress drop were calculated from the
field observations. Taking the fault length L = 55 km,
assuming fault width W = 1/3 L and the average observed
1 displacement D = 250 cm, and rigidity p = 4 x 1011 dyne/cmz,
the seismic moment ;s M=1.0x 1027 dyne/cm. The stress drop

b calculated using a strike-slip model is Ac = 35 bars.

Source Parameters from Telieseismic Observations

Source mechanism and seismic moment of the earthquake were
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determined from analysis of P and surface waves. Data from
WWSSN, Canadian network, and SRO stations were used in the
analysis. The fault plane solution, obtained from both short
and long period P-wave polarities, is shown in Fig. 3. The
solution is well constrained with a strike: N73°W, dip: 78°S
and slip angle: 4°. These are in exéellent agreement with
the field observations. Essentially they confirm the right~
handed, strike-slip faulting'with a very small thrust component.
These results are further confirmed by the surface wave data.
The Rayleigh waves from 19 stations were analyzed to
determine the seismic moment. Because of the large magnitude
of the event, low-gain stations and SRO's Qere most suited for
this study. The selection was made to obtain a good azimuthal
coverage. In addition to Rl's, 5 Rz's were used. Station
distributions and great circle paths are shown in Fig. 4.
Seismic moment was determined from the amplitude spectra
and corrected for attenuation and geometric spreading.
Theoretical amplitudes were calculated taking into account
source finiteness, radiation pattern and layered earth models
(Harkrider, 1964; Toks8z et al., 1965; Saito, 1967; Tsai and
Aki, 1969, 1970; Canitez and Toks#z, 1971). A Gutenberg earth
model was used for continental paths. The Q-values used were
a combination of values given by Tsai and Aki (1969), Kanamori
(1970), and Burton (1973). Most stations were located at nearly

equal distances from the source. Thus the relative amplitudes




at long periods are not affected appreciably by the velocity
and Q-models chosen.

The observed and theoretical amplitudes at T = 100 sec

period are shown in Fig. 5. Theoretical amplitudes were calculated

using a focal depth = 15 km, and a source model given by P-wave
first motion solution, with the seismic moment as a parameter.

A very good fit is obtained with a seismic moment of

26 26

Mo = 7.5 x 10 dyne/cm. This is close to the value (10 x 10
dyne-cm) calculated on the basis of fault length and surface
displacements observed in the field. The effect of source

finiteness and rupture velocity on spectra of long period waves

was not observ-:°d. The source parameters are summarized in Table

l.

Conclusion

The Van earthquake provided excellent data for comparing
source properties determined from field observations at the
source and from seismic records at teleseismic distances. The
surface faulting was very clear. The largest displacements were
in the western half of the fault and the surface data suggested
that fault rupture started in the west and propagated eastward.
The fault plane solution agrees best with fault parameters in
the western half.

The seismic moments calculated on the basis of observed

fault length and displacements and determined from Rayleigh
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wave spectra were 1.0 x 1027 and 0.75 x 1027 dyne~-cm, respectively.

Considering the pdssible uncertainties in choice of parameters
used in both calculations, the agreement is remarkable. It
supports the idea that displacements at the surface were
representative of those along the whole fault width.

The observed displacements and the stress drop (Ac = 35
bars) are relatively high in comparison with other strike-slip
earthquakes (Kanamori and Anderson, 1975) of 55 km fault length.
This is probably due to the relatively foung age of the fault,

and the strength of the rocks that make up the fault zone.
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Summary of Source Parameters

Strike
Dip
Slip

PFauit Length

© Magnitude (Mg)

Ave. Displacement
Moment (dyne-cm)

Stress Drop -

Field Measurement

{(static)
N70°W
n90°

275 cm
1 x 1027

35 bars

11.

Teleseismic

N73°W

78°s

40
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Figure Captions
Fig. 1 - (a) Location of the earthquake within the seismo-~
tectonic setting of Turkey (inside the box), and (b)

detailed map of the observed fault trace.

Fig. 2 - Photographs of the fault trace observed immediately
after the earthquake. Photographs (a,b) show the
western section and (b,c) the central section of the
fault. The right-handed displacement is clearly visible
by the 350 cm offset of the stream (b) and the 250 cm

offset of a ditch (d).

Fig. 3 - Fault plane solution giving predominantly right-handed
strike-slip motion in agreement with field observations
shown in Fig. 2. Fault plane parameters: strike N73°W,

dip 78°S, slip angle 4°.

Fig. 4 - Amplitude spectral density of Rayleigh waves at
T = 100 sec. Circles and traingles signify values
determined from R;'s and Ry's respectively. Line

represents theoretical amplitude for a source model given

by P-wave fault plane solution with seismic moment of

Mg = 7.5 x 1026 dyne-cm.
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3. SEISMIC WAVE PROPAGATION

Attenuation of Seismic Waves
in Dry and Saturated Rocks:

II. Mechanisms

David H. Johnston and M. Nafi Toks8z

Department of Earth and Planetary Sciences

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

and
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ABSTRACT

Theoretical models based on several hypothe sized
attenuation mechanisms are discussed in relation to published
data on the effects.of pressure and fluid saturation on
attenuation. These mechanisms include friction, fluid flow,
viscous relaxation, and scattering. The application of these
models to the ultrasonic data of Toks®z et al. (1978)
indicates that friction on thin cracks and grain boundaries
is the dominant attenuation mechanism for consolidated rocks
under most conditions in the earth's upper crust. Increasing
pressure decreases the number of cracks contributing to
attenuation by friction thus decreasing thekattenuation.
Water wetting of cracks and pores reduces the friction
coefficient, facilitating sliding and thus increasing the
attenuation. In saturated rocks fluid flow plays a ‘secondary
role relative to friction. At ultrasonic frequencies in porous
and permeable rocks, however, Biot-type flow may be important
at moderately high pressures. "Squirting" type flow of pore
fluids from cracks and thin pores to larger pores may be a
viable mechanism for some rocks at lower frequencies. The
extrapolation of ultrasonic data to seismic or sonic

frequéncies by theoretical models involves some assumptions,

verification of which requires data at lower frejuencies.
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MATHEMATICAL NOTATION

19.

Biot flow structure constants
pore-crack porosity

frequency

wavenunber

crack half length

volume flow

radius of scattering inclusions
matrix moculi and density
inclusion moduli and density
effective moduli and density
frame bulk modulus

nunber of cracks per volume
pressure

confining fluid and differential pressures

guality and dissipation factors

seismic velocity
attenuation coefficient
aspect ratio

log decrement

crack/pore porosity ratio
viscosity

dilatation

coefficient of friction

matrix and effective Poisson's ratios




Nd=

20.

relaxation time
tatal porosity
permeability
angular frequency

critical frequencies for squirting flow
and shear relaxation
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INTRODUCTION

In order to reasonably evaluate and interpret laboratory
measurements generally made at ultrasonic frequencies (~l1 MHzZ)
and moré importantly to extrapolate these results to seismic
frequencies, a precise definition of the mechanisms involved
in attenuatiorn along Qith their pressure and frequency
dependence is needed. Numerous mechanisms have been proposed
and each may be considered to have a greater degree of impor-
tance to the overall attenuation under certain physical
conditions. These mechanisms include: matrix anelasticity
including frictional dissipation due to relative nmotions at
the grain boundaries and across crack surfaces (Walsh, 1966);
attenuaticn due to fluid flow including relaxation due to
shear motions at pore-fluid boundaries (Walsh, 1968 and 1869;
Solomon, 1973), dissipation in a fully saturated rock due to
the relative motion of the frame with respect to fluid inclusions
(Biot, 1956a,b; Stcll and Bryan, 1970); “"squirting" phenomena
(Mavko and Nur, 1972 ; 0'Connell and Budianski, 1977); partial
saturation effects such as gas pocket sgueezing (White, 1975); energy
absorbed in systems undergoing phase changes (Spetzler and
Anderson, 1968); and a large category of geometrical effects
including scattzring off small pores and large irregqularities
and selective raflection from thin beds (0O'Doherty and Anstey,
1971; Spencer et al., 1976). Of these mechanisms listed,
all except the geometrical effects are dependent upon intrinsic
rock properties and will be considered in this study. It is
our purpose to evalute these mechanisms in terms of experimental

data in order io detceriine under what conditions one or more
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may be dominant in causing the overall attenuations of both

P and S waves.

-

In this paper we begin by examining the published data
on seismic wave attenuation in rocks under varying physical
conditions, highlighting important features that contribute
to our understanding of the mechanisms involved. In the
second section attenuation mechanisms along with available
theoretical formulations are presented. In the final section,
the theoretical models are compared to the data obtained by
Toksdz et al. (1978, this issue). 1In Appendix A, the

calculation of effective elastic moduli required for

determining the attenuation is briefly discussed. Our main
emphasis in this part will be to determine the relative
importance of the mechanisms in contributing tc the overall
attenuaticn and to what extent laboratory data may be used

to infer rock properties from seismic data obtained in the
field. Our discussions will be limited primarily to fully
satugated and completely dry competent rocks under pressures
up to a few kilobars and relatively low temperatures as might

be encountered in geophysical exploration.

ATTENUATION DATA

Seismic body wave attenuation has been measured for
many rock types over wide ranges of physical conditions and
frequencies, and by many technigues. Unfortunately, the
systematics of attenuation behavior with pressure, temperature
and saturation conditions has not been adequateiy measured rnor

is it well understood. With some exceptions, lahoratory daetermin-
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ations of attenuation arce limived vo specific rocks under
one physical state. However, an overview of these data
can proyide useful information on the nature and mechanics
E of attenuation in upper crustal rocks. In this section,
individual determinations of attenuation will be briefly
surmarized, followed by a more extensive review of data

that is pertinent to this vaper.

The data examined in this paper have been obtained by
numerous experimental technigues including pulse transmission J
of several types, resonant bars, and slow stress cycles. Each
method determines a different measure of attenuation. The
most commonly found quantities in the literature are the
attenuation coefficient, =, for a plane propagating wave in an
infinite medium; the logarithmic decrement, §; and the

-1

dissipation factor, Q -, or its inverse, the "quality factor"”,
P

Q. The relationships among these are given by:

(1)

where V = velocity and f = frequency. In this paper, we

will deal with the parameters 01, @, and @ exclusively.

A representative sample of individual attenuation .
measurements 1is listed in Table 1 along with other pertinent
parameters. Another surmary of individual measurements taken
from the coémpilation of Bradley and Fort (1966) is shqwn
graphically in Figure 1, where Q as a function of rock type
and rock porssity is plectted. The values taken are generally

at surface pressure although they cover a wide frequency range.

Figure 1 shows
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the wide variability of attenuation in rocks and a general
trend of Q inversely proportiocnal to porosity. &hs noted by
many investigators (Wyllie, et al., 1962; Knopoff, 1964,
Bradley and Fort, 1966; and others), the accumulation of
individual attenuation measur~ments has led to a series of
generalities that may be applied to the nature of Q in crustal
rocks. These are summarized below, with references to later
sections of this paper where certain effects are discussed

in more detail.

1. Frequency Dependence: Laboratory experiments show

that Q may be independent of frequency (a proportional to f)

over a broad frequency range (10"2-107

Hz) especially for some
dry rocks (Birch and Bancroft, 1938; Born, 1941; McDonal et al.,
1958; Peselnick and Outerbridge,-1961; Attwell and Ramana, 1966;
Pandit and Savage, 1973; and others). Q"l in liquids, however,
is proportional to frequency (Pinkerton, 1947) so that in some

highly porous and permeable rocks the total o~

may contain a
frequency dependent component (Born, 1941; Wyllie et al., 1962).
This component may be negligible at seismic freguencies even

in unconsolidated marine sediments (Hamilton, 1972).

2. Strain Amplitude: Attenuation appears to be independent

of strain amplitude for low strains such as those associated with
seismic waves (Mason, 1958; Gordon and Davis, 1968). Some

evidence exists (Winkler et al., 1977) that attenuation
6

discontinuously increases above a strain of about 10~
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3. ElﬂiﬂmﬁﬁkﬂiﬁPiO”‘ Attenuation for fluid saturated

rocks is highes then for dry rocks and depends on the degree

of saturation, fluid tvpe, and frequency in a complicated way.

For rocks fully saturated with a low viscosity fluid (water,

oil) it is gunerally found that at ultrasonic frequencies

Qp > QS. This topic will be further discussed in the néxt section.

4. VPressure and Stress Dervendence. Observations show

that attenuation decreases with increasing confining pressure.
This is usually considered to be due to the closing of cracks

in the rock matrix. Data supporiing this and theoretical models
of the pressure effccts will be discussed in later sections of
this vaper. For avplied nonhvdrostatic stress, the attenuation
appears to be anisciropic (Merkuelova et al., 1972; Walsh et al.,
1970) . For shear waves polarired normal to the axis of maximum
compression, attenuation is lowest due to the closure of cracks
with faces normal to the axis (Lockner et al., 1977). At high
difrerential stressces, the onset of dilatancy increases the
attenuation (Lockner et al., 1977).

5. Temperature Dependernce: The small amount of data on

this topic (Volarovich and Gurevich, 1957; Gordon and Davis,
1968) indicate that Q is generally independent of temperature at
temperatures low relative to the melting point.

An increase of attenuation
in quartzite with temperatures above 150°C noted by Gordon and
Davis (1968) may be due to thiermal cracking of the rock. Near
the boiling temneratures of pore fluids, attenuation may be affected
strongly by tenperature.

We will now consider in rmore detail data pertaining to the

roles of fluid satuvation and hydrostatic pressure in
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determining the attenuation of seismic waves in crustal
rocks. In some cases the absolute determinations of atten-
uation reported by investigators are unreliable, yielding
unreasbnable values. Therefore, we generally present the

data in terms of the relative change in a or Q-l.

Attenuation as a Function of Saturation Conditions

Although of great interest to the exploration community,
relatively 1little experimental work has been done on the
nature of attenuation as a function of saturation conditions.
Even the published data must be examined critically due to
the inherent difficulties involved in partial saturation
work. Unfortunately, little or no detailed description is
given in the experimental literature about the techniques of
fluid saturation. An important, yet experimentally difficult,
aspect is maintaining a homogeneous distribution of the .
saturant in the bulk of the rock. We must alsc address the
guestion as to what constitutes a "dry" rock. In most cases,
samples are oven-dried prior to fluid injection. Heating
the sample will cause some alterations of the matrix structure.
In any event, it is nearly impossible to remove the fluid
completely; at least a mono-molecular layer of fluid will

probably remain in thHe thinnest cracks.
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The degre2 of saturation and the type of saturant,
characterized primarily by viscosity, appear to play an important
role in attenuation. Studies of the effect of partial saturation
by various fluidslhave been reported in Born (1941), Obert
et al. (1946), Collins and Lee (1956), Wyllie et al. (1962), and
Gardner et al. (1964). A sunmary of these results is shown in
Figures 2-5, where Q or the fractional change in Q is plotted as
a function of percent saturation. As pointed out in the preceding
section, the overall @ of the rock may be considered to contain
a frequency independent component plus a frequency dependent
component due to the fluid inclusions. Thus the effect of
partial siaturation may be frequency dependent (Born, 1941).
However, since the curves shown here were taken over a wide range
of frequencies but exhibit similar behavior, fluid losses may not
dominate fregquency independent losses in most rocks at surface
pressures.

Most of the rocks shown in Figures 2-5 are saturated with
water, chemically active with intergranular material. The
exception is the alundum (\1203) saturated with soltrol, a
relatively inert petroleum neptha, shown in Figure 3. The
behavior of «ttenuation as a function of water saturation is
similar for all rocks. ¢ 1s sharply reduced at low saturations
presumably cue to the wetting effect of water entering the fine
cracks, possibly reactiny with intergranular material and
softening the rock. Also note that the effect of pressure is to

reduce the eifect of saturut.orn for both P and S waves as shown in

i
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Figures 4 and 5 since the finer

cracks are closed. In the case of soltrol saturation

(Figure 3) the change in Q observed for water saturation

is not seen. This implies that the effect observed for
water saturation is primarily due to either chemical
alteration of the intergranular material or a wetting
phenomenon. Since it is unlikely that water reacts strongly
with alundum, we favor the explanation that dififerent wetting
properties cause the different saturation effects observed.
In real rocks, of course, a combination of the two mechanisms
is likely.

The effect of fluid type, i.e. viscosity, has been
discussed indetail by Wyllie et al. (1962) and Nur and
Simmons (1969%9a). The dependence of attenuation on fluid
viscosity is complicated and not at all obvious from results
presented by Wyllie et al. (1962). Takiég these data at face
value, it would appear that very large viscosity fluids
(eg. glycerol) result in small fluid contributions to atten-
uation. This makes sense for some attenuation mechanisms
such as fluid flow in that higher
viscosity fluids decreasé the effective permeability .
However, Nur and Simmons (1969a) havé shown that the viscosity
effect is frequency dependent, consistent with a relaxation
type mechanism. In their experiment, a Barre granite
(porosity =0.6%) was saturated with glycerol which has a
viscosity extremely dependent on temperature. Thus by
varying the temperature of the saturated sample, the effect

of viscosity on velocities and relative attenuation of P and
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S waves is measured. The attcnuation of S waves as a function of
pore fluid viscosity is shown in Figure 6. The relaxation peak
occurs at a viscosity where the characteristic time is equal to
the wave period. An experiment reported by Gordon (1974) shows
similar results.

Attenuvaticon as a Function of Pressure

The pressure dependence of attenuation has been generally
neglected by most investigators yet the behavior of Q with
pressure can vield as much information about mechanisms as
the frequency dependence. When a rock is subjected to hydrostatic
pressure such as overburden pressure, its elastic and anelastic
properties will change. The behavior of elastic properties
under pressure is well known and a theoretical treatment of it
may be found in Tokséz et al. (1976). The most important factor
causing changes. in velocity is the chance of porosity witﬂ
pressure; in particular, the closing of thin cracks. This ailso

holds true for changes in attenuation as will be discussed in the

next section. In all cases, attenuation decreases (Q increases)
with increasino pressure. Experimental data verifying this are
found‘in Gardner et al. (1964), Klima et al., (1964), Levykin ;
(1965), Gordon and Davis (1968), Al-Sinawi (1968), Walsh et al.,
(1970) and Toks®z et al. (1978). For these data and the theoretical j
models to be presented, the pressure given is the differential
pressure, Pg = P, - Pg, where P, is the confining pressdre and Pg
is the fluid or pore pressure. This relationship holds for all
rocks as demonstrated by laboratory tests (Wyllie et al., 1958;

Nur and Simmons, 1969b).
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The attenuation of P waves in diabase and greywacke
were measured by Klima et al. (1964) up to a pressure of
4 kilobars (kb) by a pulse transmission method with a
prevailing frequency of 0.9 MHz. Although not s:tated
explicitly, the samples are assumed to be air dry. The
results of this experiment are shown in Figure 7 which plots
the change in the attenuation coefficient, a, as a function
of préssure. In all cases a clear decrease in a is observed
up to about 1 kb. The relative changes in attenuation
are greater than those of the velocity measured in the same
type rocks under the same conditions (Pros et al., 1962).
Levykin (1965) investigated the attenuation of both P
and S waves in several igneous and metamorphic rock types
up to pressures of about 4 kb. A pulse echo technique at
a frequency of 1 MHz was used. Samples were air dry. The

results of these experiments for several gneiss samples are

shown in Figure 8. Again, the attenuation decreases i
rapidly with increasing pressure, leveling off after about
1 kb. Levykin attributes the differing extent to which '
attenuation is changed under pressure to be due to differences
in the weathering of the rocks.

Gordon and Davis (1968) studied the effect of pressure
(up to 4 kb) on a fluid saturated granite using slow stress
cycles (f = 10 mHz). Their dataare reproduced in Figure 9.
The same features as seen in the previous works are evident
here.

So far we have considered data only for.low porosity

rocks, either dry or completely saturated. However, the
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pressure effect for a partially saturated Berea sandstone has
been studied by Gardner et al. (1964). Both extensional and
torsional Q values were determined using resonance techniques
at frequencies up to 30 kHz. External influences on the sample,
such as losses into the pressure medium were considered. These
data are shown in Figures 4 and 5. The same general behavior
is seen for the data in Toks®z et al. (1978) for dry, methane,
and water-saturated Berea sandstone at ultrasonic frequencies
using the pulse transmission technique. The Q, however, levels
off at a lower pressure than for the igneous and metamorphic
rocks.

The variation of attenuation for P and S waves with
pressure was also studied for a variety of rock types by
Al-Sinawi (1968). A pulse transmission technique using
122 kHz transducers was used and the pressures for which
measurements were taken were .5, 1, and 2 kb. All of the rocks
studied were sedimentary except a granite gneiss and a
volcanic tuff. Al-Sinawi found, as observed before, that
both Qp and a. decreased with pressure. In some rocks,
particularly limestones, the pressure effect is different,

however, this is not completely described.

ATTENUATION MECiHANISMS
As a first approximation we will assume that attenuation

mechanrisms are independent of each other. Thus, we may
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consider each mechanism separately and then combine the results
to determine the overall attenuation. More specifically, we

will consider separately the relative effects of the matrix
anelastiqity, the viscosity and flow of saturating fluids and
scattering from. inclusions. The pressure dependence of these
effects will be included. 1In all these cases the available
theoretical formulations are not very rigorous. They are guided
primarily by experimental observations and as a whole should be
treated as empirical relationships. The calculation of effective
elastic properties, necessary for the determination of attenuation,
is discussed in Appendix A. The method used is that of Kuster
and Toks8z (1974) and Tokséz et al. (1976).

Attenuation Due to Matrix Anelasticity

Attenuation of seismic waves in a rock matrix can be
attributed to two factors: (l) intrinsic anelasticity of matrix
minerals and (2) fri;tional dissipation due to relative motions
at the grain boundaries and across crack surfaces. The intrinsic
anelasticity of minerals is generally small. In individual
crystals Q values are generally higher than a few thousand,
while in the whole rock Q values are normally lower than a few
hundred. Thus, in considering matrix attenuation, it is reasonable
to neglect the intrinsic attenuation in minerals and to consider
only the attenuation across grain surfaces and thin cracks.

The importance of frictional dissipation is supported by
the observation that Q is generally independent of frequency as
predicted bytﬁis mechanism. However, friction across crack
surfaces cannot account for all the anelasticity of the matrix.

As pointed out by Walsh (1966), rocks subjected. to confining

pressures high enough to close all cracks
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still exhikit non-zero attenuation. Thus it is necessary
to consider in addition to dissipation across crack surfaces,
an "intrinsic" anelasticity of the aggregate minerals.

The exact mechanism of grain boundary and crack dissipation
is oot krown but frictional dissipation due to relative motions
of the two sides may be the major factor (walsh, 1966). If this
is the case, then-the attenuation should depend very strongly on
the surface conditions that arffect friction between grains.
Among these are whether rocks are saturated or dry, the properties
of saturating fluids, and the amount of clay or other soft
components in the matrix.

From laboratory experiments and the lunar experience it is
found that granular materials exhibit very high Q values when
totally dry ard in a vacuum. In the absence of atmnosphere and
wa*ter, the Coulomb forces across drains are very strong and
friction coefficients are high. Hence, no sliding motion can
take place across the surfaces. This accounts for very high Q
values measured for seismic waves in the moon (Q = 2000-5000:
Dainty et al., 1976; Nakamura et al., 1974; Latham et al.,

1974; Toks8z ~t al., 1974) and in the laboratory under hard

vacuum conditions (Pandit and Tozer, 1970; Warren et al., 1974;
Tittmann et al., 1972, 1975). 1In the laboratory when a 1itt1é
water vapor was introduced into the vacuum chamber, Q values
decreased significantly.

It is difficult to formulate attenuaticn due to grain
boundary and "frame anelasticity" effects since this requires

the detailed knowledge of crack and grain boundary properties.
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Walsh (1966) formulated the problem by approximating the cracks
as ellipsoids.in plane strain. For random orientation of cracks,
the Q values for comprgssional and shear waves were computed
using the friction coefficient, «x, effective Poisson's ratio o*,
matrix and effectivé rock moduli as parameters. The resulting
expression for P waves in an infinite medium is too complicated

. to be presented conveniently but has the following form:

* -k
o-l - E ii-i—%g 23N B, o (2)
P E (1-2"%) Vg

when E* and E are the effective and matrix Young's moduli
respectively, and N is the number of cracks with half length, £,
in a volume, Vo- The function F(x,o*) is implicitly dependent on
the angle between the normal to the crack plane and the direction
of wave propagation. Only cracks of certain orientations,
détermined by v and o*, will contribute to the attenuation.

A closed form solution for the attenuation of S waves is
impossible to obtain, but again from the Walsh (1966) formulation
we may write the general form as ‘

-1 E' 3N

Q = F(x) (3)
s (1+o*)E 'O

where F(x) is a function of the friction coefficient.
For reasonable values of the friction coefficient and Poisson's
ratio, Qp/Qs may be found by numerically evaluating equations 2
and 3 (Walsh, 1966). For «x between 0.0 and 0.5 and o* between
0.15 and 0.25, Qp/Qs is found to be between about 0.4 and 1.5.

For most dry rocks Qp/Qs < 1, while for saturated rocks Qp/Qs ~ 1.0
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at surface pressure (see Table 1).

Many data (Peselnick and Outerbridge, 196); Peselnick and
Zictz, 1959; Knopeff, 1964) can be explained by the frictional
dissipation mechanism. This mechanism which yields a constant Q
with frequency, also explains the "frame anelasticity" incorporated
in Biot's (1956a,b) formulations.

Although friction explains much of the observed behavior of
attenuation in rocks, the calculation of absolute values requires
the specification of too manv unknown parameters (friction
coefficients, number and radii of cracks whose surfaces are in
contact). Fur+ihermore, these parameters most likely will change
with saturation conditions. However, the Walsh formulation is
useful in detormining the effect of pressure on the frictional

mechanism.
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In order to formulate this pressure dependence we assume:

1. The cracks and grain boundaries that contribute to
friction can be characterized by very thin sphercids with a
small aspect ratio,.om (where o = thickness/diameter). From

equation A-3, the relative change of the fractional volume, c,

for this family of cracks as a function of differential pressures is:

2
- (1-07)

dg = KI: [——"4 ‘ ) (4)
A 3T|'Gm (1-20)

where 0 is tho matrix Poisson's ratio and Ki is the effective
static or frame bulk modulus.

2. The effective coefficient of friction, K, is constant
with pressure. Thus, F(x) in equation (3) is a constant.
If we assume that the effective Poisson's ratio, o*, varies more
slowly with pressure than c, then F(x,o0*) in equation (2) is
essentially a constant dlso.

Since the fractional volume of cracks with aspect ratio

3 isg:
m

4na N(um)£3
cla ) = m (5)
m 3 Vo .

equation (2) may be written as:

1 —o%)  clap)
o't a3 B2 L2 Ttm pie,0m (6)
p 4 E (1—20* ) ﬂam
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with a cimilar chansge for equation (3). Then:
-1
dQP dE* dc
—E7 - PS84 (7)
Q E*
P
where : includes variations in o* and F(x,0*). Using
assumption 2, :-»0. Substituting equation (4) into (7) and then
integrating, we finally obtain @
L (8)
p  “Po Eo*
4 (1 - 02) .. .
where A = - ———————— = constant. A similar expression
3nam (1 - 20)
is obtained for the attenuation of S waves.- Q-1 and Q;l
at P = 0 are found empirically and thus the imaginary parts

of the matrix mecduli can be set as described in Appendix A. 1In

fact, at each pressure, the imaginary parts are given by:

=
n

= &g+ 4/3ugact - a/3up0lt

(9)
vy uRQ;1
These results can then be used in equations (A-1l) and (A-2) to
determine the effective moduli, velocities and attenuation.
Since a, is arbitrary, the constant A is a free parameter and
must be found empirically.

At first glance, the exponential decay of Q"1 with pressure

predicted by equation (8) may not seem reasonable. As stated
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before, the attenuation of many rocks at high preséure is
non-zero. However, equation (8) describes only the effects of
cracks which contgol'the behavior of the elastic and anelastic
properties at relatively low pressures. If one considers a
rock with an extremely low total porosity but moderate crack
porosity such as a granite, then equation (8) may truly represent
thé pressure dependence of Q‘l. This is indeed observed in the
data from Gordon and Davis (1968) shown in Figure 9. For rocks
such as sandstones, however, we must consider the intrinsic
aggregate anelasticity to contribute to the observed attenuation
at pressures where the cracks are closed. In our models this is
determined empirically and assumed to be constant with pressure.
One further consideration is the difference between surface
pressure Q values for the dry Berea sandstone determined by the
ultrasonic pulse method (Toks8z et al., 1978) and values obtained
by dynamic resonance (Gardner et al., 1964 and unpublished data by
the authors). Compared on a common basis, the P value for the
pulse technique is about 20 while for the resonance method it is
highef t. in 50. The discrepancy is sméller for the saturated
case. Two explanations are possible. Either the friction
mechanism as we understand it.does not provide a frequency
independent Q or the attenuation is dependent on strain
amplitude. Some evidence favors the latter. Winkler et al. (1977)
have reported that Q discontinuously decreases at a strain of about
1075, rThis may be due to the presence of asrerities in the cracks
which inhibit sliding until a threshold amplitude is exceeded.

The higher amplitude ultrasonic pulses (strain >10-6) may thus
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be able tec cause sliding on these rough surfaces and result in
a higher attenvation. In the saturated case, crack surfaces
are lubricated and the threshold amplitude is lower. Our

ow:n unpublished resonance data on the Berea sandstone and
Plexigluass corroborate the amplitude threshold theory.

As Winkler reported, a discontinuous increase in attenuation was
observed in the sandstone. However, no such increase was
observed in the crack and grain boundary free Plexiglass.

This result further strengthens the idea that cracks with
asperities in rocks result in an amplitude dependent frictional
mechanism. It may therefore be valid to compare experimental
and in situ results only when assured that factors such as

strain amplitude are equivalent.
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Attenuation Due to Viscosity and Flow of Saturating Fluids

All rocks in the upper crust are partially or completely

saturated with some fluid. It is of special interest then to

consider the effect of viscous fluids in a solid rock matrix.
Some mechanisms by which fluids contribute to attenuation are
illustrated in Fig. 10. These fluids in elongatad pores and
finevcracks contribute to attenuation in a complex manner.
First, attenuation peaks due to viscous relaxation will develop
at freguencies dependent both on pore geometry and fluid
viscosity. For a rock with a wide spectrum of pore aspect
ratios, the attenuation spectrum is of a complicated form.
This problem has been !discussed by Walsh (1968, 1969), Solomon
(1973), and Kuster and Toks8z (1974) for spheroidal pores.
Second, fluid flow between pores, induced by the stress
(seismic) wave, may cause attenuation. These flow mechanisms
fall into two categories, inertial flow (Biot, 1356a,b), important f

at ultrasonic frequencies, and "squirting” flow (Mavko and Nur,

1975; O'Connell and Budiansky, 1977), more prominent at lower
frequencies. We will consider each separately and our
analysis of "squirting" flow will also include the formulation
for viscous relaxation.

In highly porous and permeable rocks, relative motion

may take place between the rock frame and the saturating fluid




41.

] as seismic waves propagate. Biot (1956 a,b and 1962a,b)

derived a thcory for acoustical wave propagation in an iso-
tropic solid with interacting pores. This theory can be

i used to caloulate foth velocity and attenuation.

Biot theory predicts the existence of three types of body waves,
two dilatationral and éne shear. One dilatational wave 1is highly

attenaated ind resemiles a diffusion wave. The other is the

L. Anlia e

P bcdy wave that travels with little attenuaticn or dispersion.

A formulation of Bict's theory has been ueveloped by Stoll
and Brvan (1970) and stoll (1374 and 1977) and has been adopted
for this stud-.

As with attenuation due tu viscous shear relaxation,

the viscous .:2sistance to flu:d flow i1s frequency dependent
for oscillating moticn. Below o certain frequency, dependent
on the fluid provert:ies and vore characteristics, thls resistance

is given 1y the ratic of the fluid viscosity, n, to the
physical pecrmeability, , and may be considered approximately
constant, describing Polseuilie flow. At higher frequencies,
turbulent flow Jdevelops in which the effects of viscosity are
felt only in a thin boundary laver.

For freguencies at which Poiseuille flow is valid, the
attenuation coefficient, a, for the P type body wave varies as

the square of the frequency (Q-L « f). At higher frequencies,

-

Biot derived a correction factor to the fluid viscosity and
o . Y, -1 -y
found that a is proportional to f'? (Q « £ '3, Shear
attenuation involves only the idea that the moving solid frame
drags the viscous fluid with it. Since the fluid motion is
due only to inertial stresses, this mechanism must be treated

in addition to the viscous relaxation medel.




The Biot type loss mechanisms, pressure gradient flow and

Viscous drag, are schematically illustrated in Figure 10.
Biot theory and_ the numerical model of Stoll and Bryan

(1970) require the following parameters: (follcwing previous

notations) the elastic moduli for the frame, K.* and uA*

A
and matrix, K and u; the bulk modulus and absolute viscosity
of the fluid inclusions, K' and n; the porosity, ¢, the
physical permeability, x; and the densities of the matrix
and fluid, p and p'. All of these parameters are either
known or can be calculated using the technigue described by
Kuster and Toks8z (1974) and Toks8z et al. (1976)
(Appendix A). Two other free constants derived from Biot
theory, a pore size parameter, a, and a structure constant,
a', must be appropriately chosen or experimentally found for
the material being considered. The choice of these values
is discussed by Stoll and Bryan (1970).

The attenuation formulations, for the two dilatational

waves after lengthy algebra, reduce to the solution of the

following period equation (Stoll, 1974):

2 L a2 2 _ 2
Hk pw plw Ck =0 (10)

&2 _p.wz mmZ - Mk? - i(;)Fn

where w is the angular frequency and k is the wavenumber ,
m =a'p’'/¢ (witha’> 1). H,C and M are op«@ra:ors vhich are
functions of the frame, matrix and fluid moduli, and F is
a complex high frequency correction factor derived by Biot

(1956b). The attenuation coefficient is obtained by solving
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for the complex roots (k = Kg * ikp) of the period equation

and using the imaginary part of the wavenumber, ky. One root
represents the diffusion wave and the other the propagating

P wave. Another, riore simple. period egquation for k may be
found for the S wave. Viscous drag at the pore-fluid interface
results in creater loss than flow induced by pressure gradients.
Thus, the model predicts that the attenuation of S waves is
greater than for the P waves in the case of the fluid flow
mechanism.

In genreral, the elastic mcdull of the frame in this
formulztion may be complex, allowing for the anelasticity of the
frame. Since this effect is considered separately in this study,
the imaginary parts of the [rame nmoduli are set to zero. Numerical
calculations carried out by Stoll and Bryan (1970} indicate that
frame anelasticity dominates over the fluid flow effects at
lower freqguencies (f < 104 Hz). At high frequencies, the fluid flow
contribution could be detected for high porosity rocks if the
permeability is alsoc hich. In this case the frequency dependence
of the attenuation coefficient is £2 at lower frequencies and
fo'5 at higher (f > 10 5Hz) frequencies. For most sedimentary
rocks saturated with water, the effects of fluid flow are small
at seismic frequencies (f{ = 10 - 200 Hz), but could become
important at ultrasonic frequencies.

The pressure dependence of attenuation due to fluid flow
depends primarily on the change in permeability in the rocl due
to compaction and pore collapse. The elastic moduli and total
porosity are ecasily obtained as functions of pressure using the
method of Toke#z et 21. (1976). Furthermore, we may assume that

thoowtecmsitu ~f the fluid inclusion remains relatively constant

’
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in the pressure range of interest,

Experimental determinations of permeability as a function
of confining hydrostatic pressure have been made for several
sandstones (Fatt and Davis, 1952), Vesterly granite (Frangos,
1967), and Ottawa sand (Zoback and Byerlee, 1976). In general,
permeability decreases with increasing pressure but the rate
of decrease depends on the total porosity and fraction of crack
porosity. In highly porous and permeable consolidated rocks, the
bulk of the porosity and permeability is contained in the large aspect
ratio pores which do not close under pressure. Fatt and Davis
(1952) found a maximum reduction in permeability of 25% at
350 bars for the sandstones, while for a granite the reduction
may be as much as an order of magnitude (Frangos, 1967).
However, since the effect of fluid flow is negligible in all
but the highly permeable rocks, we need only consider data on
that type. Measurements of permeability in unconsolidated
Ottawa sand (Zoback and Byerlee, 1976) show a slow reduction
up to 800 bars where it dfops offrapidly to level off again
between 2000 and 3000 bars. The acceleration in permeability
loss at 800 bars iSs presumably due to grain crushing and pore
collapse. However, the applicability of this study to consol-
idated rocks is uncertain nor could it easily be modeled. We
shall assume that the permeability of highly
porous rocks is constant with pressure. The effect of this is
to give an upper bound on tle contribution due to fluid flow
on attenuation.

Several investigators have proposed attenuation mechanisms
by which flow is induced between two adjacent interacting cracks

due to the relative volume change caused by the stress wave

IMecelean ~=3 e 1Q78:. NA'CAnnall
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and Budiancky, 1977). These are commonly known as "squirting"

|

|

E

F

.‘

/

l mechanisms and while they are not important at ultrasonic
frequencies, they may be so at sonic or seismic frequencies.
The elastic madel of_Toksbz et al. (1976) is particularly

| useful in treating these mechanisms in that a distribution of

crack aspect ratios is uniquely cdetermined and pressure

gradients between cracks mav be readily calculated.

Flow 1in any "squirting” mechanism is generally from small
asvect ratio (thin)} cracks to larger ones (pores). Thus the
flow field within the crack may be apprcximated by the flow
between two infinite plates as is done by Mavko and Nur (1975)
and O'Connre.l and Budiansky (1977). Here we consider an approach
to the problem consistent with the concepts and formulations
introduced by Tokséz et al. (1976). The details of the
calculations may be found in Appencix B. We assume that flow
will take place between very thin cracks with ap X 0 and pores
with o = 1 due to a differential volume change induced by the

stress wave. The pressure difference, the equalized pressure

after flow, the instantaneous flow, g, and the total flow, gr.

can be easily calculated. Assuming a relaxation of the form:

oo

Qp = q /
T 0

e YT gt = qr (11)

where 1t is the relaxation time, we find that

To= Br/afR (1 + ) (12)




where n is the viscosity, a_ the aspect ratio, K' the fluid bulk

m

modulus and € is the ratio of connected crack volume to pore volume.

‘We can make the approximation ¢ & 0 for most porous rocks.

Taking K' = 2 x 10lo

3

dynes/cmz, n = 102 poise, with a

to 10~4, we obtain relaxation times ranging

to 4 x 10-4 sec.

m

ranging' from 10~

from 4 x 10°°
The formulation of this mechanism in terms of complex

moduli yields an expression that also includes the viscous

relaxation mechanism in pores discussed earlier. This is a

result of applying the correspondence principle for the shear

modulus, n' = iwn and expressing the bulk modulus as

K' = KR' + iwg, where g is considered an unknown to be determined

from the relaxation time for the "squirting" flow. While this is

a good approximation forAhigh frequencies, at very low frequencies

(<0.1 Hz) the fluid offers little resistance to flow and thus

Kgr & 0 (O'Connell and Budiansky, 1977). It is shown in Appendix B

that the equations (A-1l) and (A-2) for the effective moduli can

be written in terms of two characteristic frequencies: w. = K/g

and wq = 3K/4n (equation B-13). w4 is recognized as the

characteristic frequency for viscous relaxation (Walsh, 1969)

and W, is the characteristic fregquency for fluid flow from cracks.

#rom the estimate of the relaxation time for this mechanism:

8n K
g =5 ET (13)
um(l + ¢€) R
-3 -2 11
For example, with ¢ = 0, an =10 7, n = 10 poise, K = 4 x 10
dynes/cm2 and Ké = 2 x 1010 dynes/cm2 we find that g = 1.6 x 10°

poise or, more generally, g = 1.6/0; poise. This mechanism is




e

-

47.

readily included in the elastic mnoduli formulations by finding
g from eq. 13, and then substituting to find K' to be used in
the elastic moduli calculations.

Other Sources of Attenuation

In many casz2s, rocks in the crust are partially saturated
by two or more fluids - air and water, oil and brine, gas
and 0il to name a few. The effect of partial saturation on
velocity is fairly well known; however, its effect on attenuation
is not as well understocd. Low seismic amplitudes from some
gas-sands, though, imply that the effect can be large. One
problem encountered is the distribution of the saturants in
the rock frame. Not only are large scale irregularities in
partial saturation found in rock formations but the distribution
on a smaller scale, pore to pore, may change. Gas bubbles in
water or oil are more likely to occupy space in the pores with
larger aspect ratios than in the finer cracks, where the friction
and relaxation mechanisms are more important. The latter effect
is eyident from the data at low saturations discussed earlier
and shown in Figures 2-5.

Several mechanisms involving the presence of free gas in
the pores mav contribute to the attenuation in partially saturated
rocks. This is illustrated in Figure 10. Gas bubbles have
several effect+s. First, the pore fiuid bulk modulus is reduced,
facilitating flow even under very small pressure gradients.
(Stoll (1977) has also suggested that in this case, conversion
to Biot diffusion tyve waves at an interface can result in
substantial energy loss.) "Squirt"'flow would alsc be enhanced.

Secondly, bubble sgueezing and moving in particular may
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contribute to a decreased Q. Thus, in partially

saturatéd rocks, the attenuation may be greater than in the fully
saturated case. A small amount of fluid is required to lubricate
cracks and grain bounéaries to facilitate sliding and energy

loss due to friction. The presence of gas bubbles on the other
hand, enhances energy dissipation mechanisms operative at full
saturation and further loss may result from motions of the bubbles
themselves. This enhanced attenuation particularly concerns
mechanisms dependent on pressure gradients induced by P waves.

An attenuation model describing the effects of large scale
irregularities (on the order of 10 cm) in saturation conditions
has been proposed by White (1975). The porous rock is modeled
as containing spherical pockets saturated with gas with the rest
of the volume saturated with liquid. Loss due to fluid flow is
enhanced at the gas-liquid interfaces. White showed that for the
particular model chosen, attenuation due to tﬁis mechanism can
be important at seismic frequencies. Therc is scme debate, however,
as to the occurrence of the saturation irregularities.

Several other mechanisms for attenuation have been proposed
although their applicability to upper crustal rocks is debagéble.
Several of these mechanisms may be operable in the upper mantle,
however, such as grain boundary relaxation, relaxation caused by
a phase change, and a "high temperature background" attenuation

probably related to Nabarro diffusion (Jackson ard Anderson, 1969).
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Experimental evidence suggests little change in attenuation as

a function of temperature at relatively low temperatures
(Volarovich and Gurvich, 1957) when rock is not cracked and
saturating fluids not altered. However, near phase changes,
atteruation could change rapidly with temperature. High
attenuaticn has been obsecrved at critical points in multi-
component systems (Spetzler and Anderson, 1968; Wang and Meltzen,
1972). Energy is absorbed by a medium whose equilibrium is
disturbed by a stress wave. The frequency at which this occurs
is dependent on the rate at which phase equilibrium can follow
the changes imposed on it by the wave (Spetzler and Anderson,
1968). This mechanism may result in high attenuation in certain
geothermal areas.

We finally consider the effective attenuation due to
scattering by. inclusions in the rock. Although this is a
geometrical effect, it can, in some cases, affect the observed
attenuation. Yamakawa (1962) has analyzed the scattering of
compressional waves by spherical pores. The equivalent attenuation

coefficient, a, is given by:

_ 12a€%r?3 2 2 3 2 (2 + 3\)5) 2
« = ¢ __7;17—- [25o + 3 (1L + v?) Bl + 5 32 ] (14)
P
K - K
where B =
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f and v = Vp/Vs, r = radius of inclusions, f = ffequency. In
the above, primed cocefficients represent the inclusion
properties. Although the effactive attenuation of incident
plane S waves has not been calculated, we may estimate this

F effect by noting that.the energy loss due to SP reflections

is equivalent to PS reflections because of the reciprocal

theorem. While losses due to SS reflections are nnt :the same

] as PP, they are close and we can reevaluate eguacion (19) for

incident S waves assuming SS = PP. Doing so, the only changes

in the equation arethat Vp is replaced by Ve and v = Vs/vp'

Attenuation due to scattering is strongly dependeat on

frequency (=« f4). As will be shown in the next section,
scattering effects can be important, if not dominant, at high
ultrasonic frequencies (f >1 MHz). At seismic frequencies,
scattering due to pores is negligible.

Another geometric effect is the apparent attenuation due
to selective reflection of the short wavelength component of
seismic waves in thin beds. Although of little importance
with respect to laboratory measurements, this mechanism may,
under certain conditions, contribute to observed amplitude loss
in seismic sections. O'Doherty and Anstey (1971), Schoenberger
and Levin (1974) and Spencer et al. (1977) have examined these
cases in detail. In general, selective reflection due %o
cyclic stratification contributes a small but important part
to the overall attenuation. 1If high reflection coefficients

occur, the apparent attenuation can be high.

sl
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INTERPRETATION OF LABORATORY DATA

We shall now consider in more detail the relative effects
of the Qariops attenuation mechanisms in dry and saturated
porous rocks. The methods and techniques discussed in the
previous secticn wili be applied to model the behavior of
attenuation as a function of differential pressure for the
ultrasonic data on the Berea sandstone presented in Tokséz
et al., (1978). These models will then be extrapolated to
other frequencies. The application of these models to
previously reported data is difficult because absolute values
of attenuation appear to be unreliable in some cases, and
parameters needed in the calculations are unavailable in others.

The procecure taken involves first modeling the attenuation
in the dry rock in order to establish the needed parameters
for the friction mechanism and intrinsic attenuation in the
absence of fluid associated mechanisms. These parameters will
then be used in the modeling of the saturated'sample data. An
important but probably valid assumption made here is that all
attenuation mechanisms that occur in dry rocks also occur in
wet ones. Given the parameters obtained from the dry case,
we may examine in more detail the relative importance of the
mechanisms ccntributing to the attenuation in the brine-saturated
case as a function of pressure. In particular, since the
attenuation due to Biot-type fluid flow, squirting and scattering
are readily calculable it remains to be seen what the contribution
due to the presence of pore fluid is in terms of the friction
mechanism and intrinsic aggregate anelasticity. The approach

taken here is e¢mpirical and thus the models presented have no
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absolute predictive ability.

The elastic moduli, fluid and frame properties used in
modeling the Berea sandstone are listed in Table II. The
bulk modulus of brine as a function of pore pressure is given
by Adams (1931) and Long and Chierici (1961). For the dry
case, the bulk modulus of air is taken to be one bar and the
pore pressure is assumed to be constaﬂt at one bar.

The surface pressure aspect ratio distribution listed in
Table III is determined by fitting theoreéically calculated
elastic properties (equations A-1 and A-2) to the P and S
wave velocity versus differential pressure data for both

.saturated and dry cases as described by Toks®z et al. (1976).
The frequency is taken to be .5 MHz. |

The contributions to attenuation in the dry case are assumed
to be due to friction and the intrinsic aggregate attenuation only.
Zero pressure Q's were taken as 23 for P waves and 26 for S waves
based on the data from Toks®z et al. (1978). The pressure

! dependence of Q for the dry Berea sandstone may be reasonably
modelled with A = 0.2 x 104 (equation 8) and an intrinsic
aggregate Q for both P and S waves of 120. The possible
variations in the parameter A are not as wide as one might
expect, ranging from 0.15 x 104 to 0.25 x 104. The results of
this empirical model fitted to the data are shown in Figure 1ll.

The introduction of brine as the pore saturant results
in no change in the parameter A, since the crack closing rate
is the same as for the dry case, determined by the static

rather than the dynamic effective bulk modulus.




53.

In the preceding section the role of fluids in determining
the attenuation was discussed. 1In particular, water may soften
and lubricate the matrix resulting in a higher attenuation
due to a friction type mechanism, especially for shear waves.
Since the contributions due to Biot fluid flow, squirting flow,
viscous shear relaxation and scattering are fairly well determined
from the properties listed in Table II it remains to be seen
in medeling the saturated data, what the contribution due to
friction is. This must be determined empirically. One important
constraint, however, is the low Q, especially Qg at high
pressures. This implies that a mechanism which is relatively
independent of pressure, such as Biot fluid flow, is required
under those conditions.

The fluid flow contributions to the attenuation are
calculated as described in the previous section. Given the
attenuation due to all the mechanisms other than friction, it
is found that to fit the data, one must choose a zero pressure
Qp for friction of 15 and a Qg of 10. These low values of Q
relative to the dry case indicate that brine saturation increases
the attenuation due to friction by almost a factor of two.
Although the data may be fit with a fluid viscosity of 1 cp,

a better fit is obtained by allowing the effective viscosity to
be 4 cp. This might be expected from experimental measurements
of the viscosity of water in clay-water systems (Low, 1959).
Such an effect would predict a higher attenuation in rocks

with higher clay content. Furthermore, while not necessary,

the best fit to the data, shcwn in Figure 12, is obtained by
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reducing the intrinsic aggregate Q for shear waves by 5%. It is
perhaps no coincidence that the seismic velocities are best fit
in the saturated case by reducing the matrix shear modulus 5%
relative to the dry case. This may reflect the‘possibility of
increased shear and thus higher attenuation at grain boundaries
due to the presence of water as discussed earlier.

The relative cdntributioné of the two important mechanisms,
friction and Biot-type fluid flow, in the brine-saturated case
are easily seen in Figure 13 showing Q;l for eachk mechanism
as a function of pressure. The small increase in the fluid
flow contribution at low pressures is an artifact of the
calculations. As would be expected, friction across cracks and
grain boundaries is dominant at low pressures but becomes less
important as cracks close. Since the bulk of the porosity and
permeability is unaffected under the pressure conditions of
interest, the fluid flow contribution to attenuation remains
relatively constant with pressure and becomes an increasingly
important mechanism. Obviously at some pressure, the porosity

and permeability of the rock will break down and one should

expect a rapid increase in Q. )
| Using the Berea sandstone properties from modél calculations;
we shall now examine in more detail the individual contributions
of each mechanism for the fully saturated case and extrapolate
these results to other frequencies. The interpretation of these
models must remain strictly within the confines imposed upon them.
That is, it is assumed that strain amplitudes are equivalent to

those in the laboratory experiment and that no other mechanisms

—
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contribute to attenuation at fraquencies other than those at
0.5 MHz.

A theoretical overview cf the relative contribution of each
rechanism considereé is shown in Figure 14. Here, the P wave
attenuation coefficients are plotted as functions of frequency
for a surface pressure condition. Figure 14 was obtained by
fixing the attenuation at 0.5 MHz based on the theoretical
model >f the pressure data (Figure 12). The resulting curves
are theoretical extrapolations. A constant Q mechanism for
friction is assumed. The same model is shown in Figure 15
except that the attenuation coefficients are calculated for a
differential pressure equivalent to a depth of about 10000 feet.
The correspornding aspect ratio distribution is listed in Table III.

Figures 14 and 15 clearly show the relative effects of
friction, fluid flow, shear relaxation and scattering on the
attenuation of P waves. Similar results are obtained for S waves.
If friction is indeed a frequency independent attenuation
mechanism, then it dominates the other mechanisms for this case.
However, as scen before, friction is of somewhat less importance
at higher pressures. As assumed in our models, the contribution
of Biot fluid flow remains essentially unchanged between Figures
14 and 15. While never doninating in this case, it is of importance
at about 10° Hz where Poisseuille flow breaks down. A striking
change in the squirt flow and shear relaxation mechanism is
apparent however. For surface conditions, the contribution due

to these mechanisms is rcadily seen from Figure l16. Here, Q-l
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for both P and S waves is shown for the squirting and shear
relaxation mechanisms only. Two peaks are evident, the lower
frequency one corresponding to the flow mechanism and the other
to viscous relaxation. The shape of the relaxation peaks are
complicated, reflecting the spectrum of pore and crack shapes.
The transition from flow to viscous relaxation takes place at
abogt 50 KHz, below whiéh Q;l? Q;I and above which Q;l > Q;l.
Even though viscous relaxation peaks at £ = 109, Hz, it is
clear from figures 14 and 16 that the contribution of these
mechanisms to the attenuation in the Berea Sandstone is small
in the frequency band of interest, even at surface pressure.
Furthermore, the effect of pressure, as seen in Figure 15, is
to close cracks contributing to both the squirt flow and viscous
relaxation, thus Iowering even further, their associated
attenuations.

Scattering off inclusions produces a negligible effect
excepF at very high frequencies where this mechanism clearly
dominates. A larger scatterer radius will shift this curve to
lower frequencies.

We finally combine both the frequency and pressure behavior
of attenuation in our saturated Berea Sandstone model in Figure 17
where the total Qp of the réck is shown. For low pressures, Qp
remains essentially unchanged as a function of frequency,
reflecting the importance of the friction mechanism. Qp increases
with pressure and at high pressures and low frequencies

(<104 Hz) Qp is greater than 100. 'Qp decreases with increasing
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frequency at hicher pressures due to the increasing contribution
of Bict flow. rFinally, at very high frequencies (lO7 Hz),
Qp decreases sharply because of scattering.

While the ultrasonic attenuation data may be understood
and mcdeled bv several mechanisms, some problems exist in the
extrapolation of these data to luwer frequencies. As discussed
earlier, the frequency dependence of the important friction
mechanism is not clearly established. Furthermore, strain
amplitudes at seismic exploration frequencies may not be the
same as those used in ultrasonic measurements, thus invalidating
the absolute estimates of Q. However, theoretical models, such
as the ones presented in this paper, provide a method of
comparing labcratory data taken under controlled conditions
with in situ data. One has to be aware, however, that the
contributions of mechanisms that may be importa;t at low
frequencies are difficult tc establish from ultrasonic data
unless supplenmentary information is available. Furthermore,
it is obvious that from these models one would only obtain a
point property of the rock. For in situ data, the intrinsic
attenuation must be isolated from other amplitude reducing
mechanisms such as scatterng, spreading, or multiple reflections,

before comparison with laboratory data.
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CONCLUSIONS

The investigation of both published and new laboratory
data on the attenuation of seismic waves in rocks, particularly
sandstanes, has showﬁ that many of the same properties and
processes that affect velocity also affect attenuation, many
times to a greater extent. These properties.include the number
and distribution of cracks, the type and amount of fluid
saturation and the mechanical properties of the rock matrix.

We have approached the problem of attenuation in dry
and completely saturated rocks by examining a number of
hypothesized mechanisms for which numerical models may be
applied. The formulation of the pressure dependence of these
models enables us to reasonably fit ultrasonic data for Qp
and Qg in a Berea sandstone. The models for attenuation
reéuire the specification .of several free parameters and thus
limits their predictive abilities. Furthermore, assumptions
involving the frequency and amplitude behavior of the friction
mechanism must be considered if laboratory data are compared to
in situ data. However, given the limitations of the models,
several conclusions regarding the attenuation of seismic waves
in rocks are possible.

1, At relatively shallow depths in the earth's crust,
the primary mechanism for attenuation is friction on grain

boundaries and thin cracks.
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2. Increasing differential pressure decreases the
number of cracks contributing to attenuation by friction.
Since frictional loss depends on the number of cracks, the
attenuation decreases with increasing pressure and eventually
approaches a limiting value we call the intrinsic aggregate
anelasticity. This is probably due to grain boundaries and
iine structure relatively unaffected by pressure.

3. 1In totally dry rocks, the attenuation is less than
vwaot or saturated rocks. The introduction of fluid into a
dry rock will wet crack surfaces and grain boundaries. By
this crack lubrication, frictional sliding is facilitated and
the attenuation increases.

4. 1In a saturated porous rock, attenuation due to fluid
flow plays a secondary role relative to friction. At low
frequencies, squirting flow may be a viable mechanism, especially
in the case of partial saturation. At ultrasonic frequencies,
the B.ot-type fluid flow mechanism, while not necessarily
dominating, plays an important role in the overall attenuation

at high pressures.
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APPENDIX A

ELASTIC MODULI FOR CALCULATING ATTENUATION

The calculation of attenuation requires the knowledge
of several elastic moduli and their pressure dependence.
Given the matrix ar grain moduli. and.density, K, y, and o,
and the inclusion properties K', yu' and p', the effective
properties of a composite medium may be found following the
treatment of Kuster and Toks&i (1974). Cracks and large pores
in the rock are represented by a discrete spectrum of various
aspect ratio spheroids. Letting c(am) be the concentration
of pores and cracks with aspect ratio Oy = thickress/diameter,

the effective moduli are given by (Kuster and Toks8z, 1974):

M
K* - K _ K'-K I (o T.:as (2 ) (A-1)
KT 4T 1/3 IXF 47 mel m) iij3t m
M
u* - v S T I clagy)-
6u* (K+2u) + p(9K+8yu) 25u (3K+4u) m=1 ’
(A-2)

[(Ti5i5 (Om) = 173 Ti455

(a )]

where '*' denotes effective properties, primed quantities
refer to fluid properties and unprimed quantities are matrix
properties. K and y represent bulk and shear moduli and

and Tijij are scalar quantities. The total porosity is:

1133

¢ = ¢ cfa)
m=1 m
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and the density is:
p* = (1l - &) + p'¢

The effect of pressure on the crack and pore distributions
and thus tn~ effective moduli and velocities of rocks has
been studiea bv Toks®#z et al. (1976). The strain field
around an ellipsoidal cavity is calculated as a function of
the elastic meduli of the matrix and an applied strain field
at infinity. The dilatation of the applied field is
—P/KA* where P is the applied nydrostatic differential pressure
and KA* is the effective static bulk modulus or frame bulk
modulus. From this, the fractional change in pore volume,
dc/c may be found. For the particular case of very thin cracks
(i.e. a_ ~+0),

m

2
{ 4 (1-0 )}

P
c E;f 3ra_ (1-20)

(A3)

where o = matrix Poisson's ratio. This relationship also

provides the basis for calculating the change in attenuation due

to friction under increasing hydrostatic or differential pressure.

Anelasticity may be introduced into the effective moduli
formulations by employing the concept of complex moduli
(Anderson et al., 1965 and Bland, 1960). This method is
particularly useful in dealing with frequency independent Q

mechanisms such as grain boundary and crack friction. Let the
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complex bulk and shear moduli be expressed as

; K = KR + iKI
(A-4)

H’vR*iuI

where subscripts R and I refer to real and imaginary parts.

If the attenuation is small then the velocities and attenuation

3 coefficients can be expressed conveniently. For c..apressional
waves,
1l/2
v, = 4]
P
(A-5)
0.1 a Rt 4/3 v
P Kg + 4/3 g
For shear waves,
up 1/2
Vg [-;] (A-6)
=1 u
QS = ._I
HR

To determine the imaginary part of the moduli it is
necessary to rely on observation and to follow an empirical
approach. The magnitudes of Ky and wug should be chosen in each

case to match observed Q values at appropriate conditions.




APPENDIX B

FLUID FLOW FROM CRACKS

FORMULATION AND ESTIMATION OF THE RELAXATION TIME

Flow will take place between thin cracks with aspect
ratiocﬂn: 0 and pores with<ﬂn3 1 due to a differential volume
change induced by the stress wave. The flu‘d pressures and
volume changes are given by:

Py = -K'8, and dC0'= c ao'(%n: 0
(B-1)

Pl = —x'el dCl = Clel, L 1

where C is the volume concentration of cracks or pores and ©
is the dilatation. The pressure difference is AP = PO - Pl.
Letting the equalized pressure after flow be P, then the
corresponding dilatation in both the crack and.pore is

® = -P/K'. The total liquid volume displaced in order to

equalize the pressure is given by:

[Te}
|
it
Qu
9
|
o8
(@]
i
0,
0
)
o}
0

0 0 1 1 B~2)

where dC0 = Coe and dCl

i

Clg. Solving for 8§ we obtain:

660 + 61

=T TTTE ®-3)

where ¢ = CO/Cl’ or the volumetric ratio of connected cracks to pores.

Furthermore:
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6, - 6

- 1 0
qT co ['l + E-] (8'4)
The instantaneous flow between two parallel plates
(crack surfaces) separated by distance h is given by
-b2 &P ®-5)
q 3n dx

where A now becomes the cross sectional area of the crack
and is equal to nhzxﬂnor thi. If we let dx = 2% (crack length)

then from equation B-1 and B-5:

rh?

q = Tn K'(8;, - 84) . 8-6)

Assuming a relaxation of the form:

4y = q (!, /T at = ar 8-7)

where 1 is the relaxation time, we obtain

AN

C (8, - 0,)/(1 + g)
T = 0’1 0 &- 8)
ﬂh’K' (el - 90)/5n

4th?

Since the volume of the crack, C0 = 333:-:
T = Bn/u;‘lt' (L + ¢) (B~9)

viscoelastic Formulation:

We will now show that by using.the correspondence principle

for both the shear and bulk moduli of the £luid phase that the
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equations for the effective moduli may be written in terms

of real and imaginary parts and two characteristic frequencies.
Rewritiﬁg equation A-1 for the effective bulk modulus by
letting 6"= (%% - 1) Ei%il (dropping the summation over

aspect ratios we obtain:

K + 4CKu§. , .
8t , .
K* = 3K +"4U = K [l‘_i_4‘i_c__’_] {B-10)
3CK$ 1 - 3KCS§
L - 3x vy
where &' = §/(3K + 4p). Letting §' be complex, i.e.
8§' = a + ib, then:
.1 + 4uC(a + ib)
* = K = * *
K* = Rii—3xca v+ 15! -~ K" * &
where
(1  4uCa) (1 - 3KCa) - 12Kuc?p?
X = R B~
Kp* = K [T " 3kca)? + (3Kcb)? J ©-11)
* = 4pC(1 - 3KCa) + 3XC(l + 4yCa)
and K bR =~T"-—3xrca)z + (3KCE)? ]
Applying the correspondence principle we let K' = KR' + iwg
and y' = iwn where n is the viscosity and g is considered an

unknown to be determined from the relaxation time for flow. We
now show that the equations for the effective moduli can be
written in terms of two characteristic frequencies and that the
real and imaginary parts of 6' are uniquely determined. For

small aspect ratios:
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D | K' _ ,, 3K + 4u' -
A a2 TER S T K TR 3y (B-12)

(Toks8z et al., 1976, equation C-4) where K 3namm3x + 4yu)/

1
(3K + 4u). Substituting the complex K' and u' we obtain after

some algebra:

§' = et (K" - iw 1 + iw/wg B-
' (K" =3+ 50 W) +te(l/ogri/ey O

where K" = KR'/K, K2 = K1/3K with we = K/g and wy = 3K/4n.

Wy is recognized as the characteristic frequency for viscous
relaxation in isolated cracks (Walsh, 1969) and We is the
characteristic frequency for fluid flow from cracks. Finally,

it can be shown that the real andvimaginary parts of &' =a + ib

can be written as:

1 2 1 1 2 K"+K,
a = 3 [(K"-1) (K"+Ky+om (=) = Zo ¢ - - =]
d Y Y3 c Y c Ya
B-14)
K"+K )
b =~% fw ( 2 ﬁL - jL)(K”—l)+ﬁ£(K"+K2)+ _~ =+ + ;L)]
Wy c a - Y Welg- W a

where A = [(K"+K2)2 + w’(-“-;:L + ﬁL)zl/(3K + 4y). The equivalent
(o] d .
result is obtained for the effective shear modulus.

 From equation (B-9) we have

1l _ 8n
We qéKR'(l + €) (B-15)
so that
8n X (B-16)

IT FaT v K

x
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Table II

Physical Properties Used for Modeling the Berea Sandstone

Matrix: K = 35 x 1010 dynes/cm2

n = 25 x 1010 dynes/cm2

o = 2.61 g/cm>

Inclusion: K' = 2.6 x 1010 dynes/cm2

n =4 x 19 2 poise

p' = 1.0 g/cm3
Frame: ¢ x 0.16
x = 75md

: -4
Fluid Flow Structure Constants: a = 1.0 x 10 , a'

]
w
.
[~]
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TABLE III

Aspect Ratio Distributions

Concentration, ¢ Aspect ratio, «a

Surface 0.12 1.00
0.04 0.10
0.10 x 1073 0.17 x 1072
0.10 x 1073 0.14 x 1072
0.20 x 1073 0.10 x 1072
0.15 x 1073 0.60 x 107>
0.75 x 1074 0.30 x 1073
0.30 x 1074 0.10 x 1073
0.90 x 107° 0.30 x 1074
0.30 x 107° 0.10 x 10 %

10000 feet 0.119 1.00
0.395 0.98 x 1071
0.152 x 107} 0.258 x 1073




Figﬁre Captions

Figure 1. Q as a function of porosity. Data for igneous
and metamorphic rocks (triangles), limestones (squares),
and sandstones (circles) are taken from Bradley and Fort
(1966) .

Figure 2. Change in Q as a function of saturation. Data from
Obert et al. (1946) and Martin (1956).

Figure 3. Change in Q as a function of soltrol and water
saturation in alundum at. about 10 kH¢. Data from Wyllie
et al. (1962). Samples 7915-B and 7928-B for soltrol and
water, respectively.

Figure 4. Q a: 11 function of saturation and differential pressure
in Berea sindstone, extensional mode. Data from Gardner
et al. (1964).

'Figure 5. Q as a function of saturation and differential pressure
in Berea sandstone, torsional mode. Data from Gardner et al.
(1964).

Figure 6. Relative attenuation of S waves as a function of pore
fluid viscosity in Barre granite. Data from Nur and Simmons
(1969a) .

Figure 7. Change in the attenuation coefficient as a function of
pressure for several rocks. Data from Klima et al. (1964).

Figure 8. Change in the attenuation coefficients of P and S
waves as functions of pressure for several gneisses. Data
from lLevykin (1965).

Figure 9. Q"1 as a function of differential pressure in a

granite. Data from Gordon and Davis (1968).
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Figure 10. Schematic illustration of several proposed attenuation
mechanisms for saturated and partially saturated rocks.

Figure 11. Model fit (solid and dashed lines) to data from
Toksdz et al. (1978, Figure 7) dry Berea sandstone. Pore
pressure is assumed to be 1 bar (14.7 psi).

Figure 12. Model fit to data from Toks8z et al. (197&, Figure
11), brine-saturated Berea sandstone.

Figure 13. Relative contributions of the friction and fluid
flow mechanism for P waves from the model of Figure 12 as
function of differential pressure.

Figure 14. P-wave attenuation coefficients at surface pressure
as functiohs of frequency, for several mechanisms considered
in the saturated Berea sandstone model. Model parameters
are listed in Tables II and III and the text. The viscous
shear relaxation mechanism is included on the line labeled
"squirt" flow.

Figure 15. P-wave attenuation coefficients as functions of
frequency for the saturated Berea model as in Figure 14.
Here, the contributions for each mechanism are calculated

at a differential pressure equivalent “o about a 10000 ft. depth.

~1
P

relaxation mechanisms in the saturated Berea sandstone model

Figure 16 Q and 0;1 for the "squirt” flow and viscous shear
at surface pressure as functions of frequency.
Figure 17. Total Qp for the saturated Berea model as a function

of frequency and differential pressure based on the results

presented in Figures 12, 14, and 15.
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ABSTRACT

Simultaneous Inversion of Surface Wave Phase Velocity

and Attenuation for Continental and Oceanic Paths
by :
Wook Bae lee

Submitted to the Department of Earth
and Planetary Sciences on 4 November 1977
in partial fulfillment of the |
requirements for the degree of
Doctor of Philosophy
An inversion study of surface wave attenuation and
dispersion has been conducted to investigate the vertical
and lateral variations of shear attenuation and shear
velocity structure in the earth's mantle. Variation of
lithosphere thickness and of shear attenuation in the
asthenosphere can be related to temperature variations,
partial melting and even some indications of the tectonic 1
history of the earth. Possible attenuation mechanisms in

the earth's mantle are expected to be thermally activated

relaxation mechanisms. The relatively small strains

associated with seismic wave amplitudes satisfy linearity
at least approximately for such mechanisms. The linearity

assumption is particularly important because of its
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computability. Causality and superposition principals are
the ‘main characteristic of linearity. Anelastic dispersion,
which arises from linearity, is an important consequence
due to causality. 1In a viscoelastic medium, anelastic
dispersion (due to causality) is considered by a given
dispersion-attenuation relation and implemented into the
inversion schenes, |

A formalism for simultaneous inversion is developed
and applied to data from North America and the Pacific.
The simultaneous invgrsion approach is formally different
and gives a different result from the approximate inversion
scheme of Anderson and Hart (1976). The L1 norm concept
in the inversion process is particularly advantageous for
the sparse and inaccurate seismic attenuation data. The
set theoretical approach (Lee and Solomon, 1975), which
includes the square matrix inverse and linear.programming
(Ly norm inversion) was used for the actual inversion.

Inversion results show: (1} a distinctive low-Q
zone everywhere in North America and the Pacific; (2) a
varying thickness for the high-Q 1lid; 60+20 km (Pacific);
80+20 km (western Nor;h America), 130+30 km (east-central
North America); (3) the LVZ and 1QZ2 coincide in western
North America and the Pacific, and overlap in eastern
North America; (4) anisotropy may be a problem in
western North America but is not a problem in east-

central North America; (' the data do not discriminate
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i anmong possible dispersion relations because errors in Q"1
data are too large; (6) the predicted dispersion in the
low velocity zone varies from region to region and

according to the intrinsic dispersion relation assumed.

Thesis Supervisor: Sean C. Solomon'

Title: Associate Professor of Geophysics
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CHAPTER I

Introduction

Seismic wave amplitudes attenuate while propagating
through the earth. This fact provides information to
understand the interior of the anelastic earth. Anelastic
properties {(seismic attenuation, viscoéity, etc.) can be
more sensitive to composition, temperature, pressure,
microstructure and the presenée of fluid phases than are the
elastic properties (seismic velocities, density). Therefore,
knowledge of the anelastic properties of the upper mantle
is complementary to knowledge of the elastic properties and
would improve our understanding considerably of the state of
~the mantle and the tectonic history of the earth. Toward
this goal, this thesis presents the solution to the inverse
problem of surface wave attenuation over continental and
oceanic paths. While solving the inverse problem and
determining seismic attenuation as a function of depth is
important to problems of seismic wave propagation, earthquake
source mechanisms, and the discrimination of nuclear explosions
from earthquakes, the main motivation of this study is to
better define phyﬁically realizable anelastic earth models,
to characterize the lateral variation of seismic properties,
and ultimately to provide clues to the sublithospheric mantle
convection flow patterns. In this study, we will suggest an
inversion scheme which is appropriate for the characteristics

(sparse and inaccurate) of seismic attenuation data. Relating
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the scismic observations and linear attenuation mechanisms,
the inverse problem will be recast to take account of the
intrinsic dispersion thac arises from linearity, which has
been often neglectéd. |

The concepts of lithosphere and asthenosphere (Daly 1940)
form an essential basis for plate tectonics (Isacks, Oliver and
Sykes 1968). In strictest terms, the major distinction between
lithosphere and asthenosphere is in their differing long-term
deformation in response to non-~hydrostatic stresses. A common
alternative distinction amenable to ready quantification using
seismic waves is that the seismic anelasticity, as measured
by the reciprocal Q-l of the specific qualiﬁy factor, is
greater by roughly an order of magnitude or more in the
asthenosphere than in the lithosphere. There is no theoretical
basis fog believing that these two different viewpoints will
give, for instance, the same value for the thickness of the
lithosphere. Nonetheless, the mechanigms of viscous deformation
and seismic wave attenuation are both probably thermally
activated and might be expected to show a qualitatively similar
dependence on the temperature distribution in the mantle. More
convincingly, it was the contrast in seismic attenuation that
led to the idea (Oliver and Isacks 1967; Utsu 1966) that
lithosphere is subducted on a grand scale in island arc regions.

The advantages of the surface wave method for studying Q in

the carth were summarized by Anderson et al. (1965): the long

period waves suffer less inhomogeneities, more readily sample
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the depths in the mantle where the most seismic energy is
dissipated, and allow the gecmetrical spreading factor to be
evaluated more accurately. Since surface waves are often the
most visible portion of seismograms, it is convenient to
measure their amplitudes.

In a linear, perfectly elastic medium, the amplitude of a
stress wave propagating a distance x is.proportional to
ei(kx‘wt), where w is the angular frequency, k is the wave
number, and t is time. In a linearly viscoelastic medium, the
wave number of a travelling wave may be considered complex, so
that amplitude is proportional to e kK*x+i(kx-0t) ynere x+ ig
the imaginery part of k. Then the dimensionless quality factor
Q and its inverse Q'l, which are the most common measures of

attenuation in seismology, are defined as

*
Q = _k Q-l = 2k (1.1)
2k ’ k

These quantities will be used as the measure of attenuation for 1
most sections of this thesis.

In this thesis we will first consider in Chapter II the
classical linear inverse problem based on the Anderson and
Archambeau theory (1964). Although this traditional theory will
be supplanted in Chapter‘v, it provides a framework to
investigate an inversion scheme for highly inaccurate and
sparse attenuation data. In Chapter II, observations of
surface wave attenuation in two different regions of North

1

America are inverted to determine Q" as a function of depth z

' .
. o en
- - _ N
.
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in the crust and upper mantle.
In the traditional theory of Anderson and Archambeau
(1964), the dissipation Q™1 of surface waves over a layered

medium at a given period is equal to the sum of the dissipation

in each layer if we assume Q'z(z) is small:

Q-1= ): _B_J-ii:l‘.Q —l
L =1 cL asj BJ _
M >
- g. dc - 1.2
QR1=Z{EJ"—B'BQa l}J -2
=1 R j 3

where the subscript j is the layer index; the subscripts L, R,
@ and 2 associated with Q"l identify the wave types Love,

Rayleigh, P and S, respectively; d. and ﬁj are the compressional-

3
and shear-wave velocity in layer j; and c;, and cp are Love- and
Rayleigh-wave phase velocities. With the additional assumption
that the losses under purely compressive stress are negligible,

so that

(Anderson, Bea Menahem and Archambeau 1965), eguation (l1.2) can
be expressed as the linear equations

M
jg& aijxj = bi r 1 =1,2, .. ,N (1.3)

B



T

116.

or, in matrix notation,

13

=b (1.4)

where b, = QL-I or QR’l at the ith frequency and x4 = Qﬂj'l in
the jth layer.

It is usually assumed that'%g—l is independent of
frequency, though there are several grounds for believing
otherwise (Tsai and Aki 1969; Jackson and Anderson 1970;
Jackson 1971; Solomon 1972a,b). Suppose, therefore, that
%Bj-l in layer j is a function of frequency f. Then ﬂgj-l
may be approximated as a polynomial in f (Backus and Gilbert

1968) in the restricted range of frequencies:

Q (£) = xj(l + cj/f + cjf)

where cj' and cj" are constants. If we can estimate these

1l

constants by physical reasoning, gfj- is still linear in the

unknowns Xq. Define, for fixed cj' and cj",

L n
Pij = aij‘l + cj/f + cjf)

where f£f; is the frequency of the ith surface wave. Then

equation (1.4) can be written as

Px = b (1.5)

ey e e




r 117.

The goal of the inverse problem is to determine a linear

estimator, L, that operates on b so as to provide a colution X

A, . . . o
so that the error Xt rue~X 1is minimized in some sense:

| %>
]
ne

b

Therefore, equations (1.4) or (1.5) are N linear algebraic
equations with M unknowns, valid if xj%@:l. Hereafter, we will
discuss our problem in terms of N linear equations with M
unknowns.

Three alternative inversion schemes for treating such a
problem are briefly discussed in Chapter II: 1) the stochastic
inverse, 2) the weighted least-square inverse, and 3) the set
theoretical approach, which includes the square matrix inverse
and the linear programming method.

It is ideal for a discrete linear inverse problem with

inaccurate observations to be considered by a stochastic
process, as long as the statistical structure of the model i
parameters and of the noise are known. If these statistical

properties are not well defined or cannot be reasonably

estimated, however, other inversion techniques must be sought.

The weighted least-square inverse applied to inaccurate

surface-wave attenuation data is the most straightforward

approach but often gives a physically implausible negative

solution for Q"1 (Knopoff 1964). The set theoretical approach
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does not share these disadvantages in that the model parameters

and the noise are constrained to be elements of prespecified
? sets.

Since the attenuation data presently available for most
surface wave paths are determired by only a few observations
(sometimes two or three), the uncertainties are usually large

and the error co-variance matrix is not at all well known. In

oA ame g

general, geophysical properties are not perfectly resolvable
vertically even though the data are error free (Backus and

Gilbert, 1968). Wwith large errbrs, the resolution obviously

degrades (Backus and Gilbert, 1970; Der, Masse, and Landisman,
1970). In modelling the attenuation of surface waves in the
crust and mantle, the resolution is not fine enough to allow
more than a few layers (three or four). In such a circumstance,
an important question, addressed in Chapter II, is the extent
of correlation and incompatibility among the data. Most likely
the observed values of attenuation are contaminatel by effects
other than anelasticity and by imprecise measurements. Since

! a small deviation in the value of an observation at a certain
frequency will cause a relatively larger error in the solution
space near that frequency than at very different frequencies,
a reasonable criterion for the correlation of the duta must be
defined. Correlation and incompatability of the data may be
possible causes of the negative solutions that result from the
least-square sense inversion. Because of this possibility, we
also want to make rules for imcompatible solutions to be

excluded. Such conditions as positiveness of the solution and
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that the solution curve fit within error bounds can be a reasonable

filter for the weighted least square inverse to be successful.
These conditions are fulfilled in terms of the square

matrix inverse by requiring:

¥ i

X. > o0
1

|b; - gil < o for all i
where % is a vector of solution parameter space, b is the
vector of observed values, E is the vector of values predicted
by the model g, and 0 is the vector of data standard deviations. ]
Moreover, the square matrix idea plays an important role in
choosing layer thicknesses for the model. In a discrete
linear inversion problem, with N equations and M unknowns, h
each equation represents an M-1 dimensional hyperplane in M |
dimensional solution space. By choosing appropriate
thicknesses, N hyperplanes can be focuged to intersect within
a small volume in solution space.

Since the data now available have large uncertainties
and, as we shall see, often show a di§crepancy between Love
wave and Rayleigh wave data, it is often better to seek an
envelope of possible attenuation models than to look for a
single 'best' model. To construct such an envelope of models

we use the linear programming method, which has been developed
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mathematically by Dantzig (1963), adapted for geophysical
problems by Johnson (1972) and discussed in theorecical '
terms by Sabatier (1977a,b). We mention in passing that other
techniques for finding such an envelope, based on trial-and-
error searches of either a contiruous or discrete model
parameter space, have been applied to the surface-wave
attenuation problem by Burton and Kennett (1972) and Burton
(1977).

In Chapter III, attenuation mechanismé in the Earth's
mantle are reviewed. A particular interest of tbis chapter
is to reexamine the linearity assumption of attenuation
mechanisms with the results of laboratory experiments and
seismic observations. Although the assumpﬁion of linearity
in attenuation is the most powerful computational tool for
non-harmonic waveforms, there have been objections to the
linearity assumption for two reasons. (1) Some laboratory
experiments on hysteresis loops for strain show that linear
theories are valid only at strain amplitudes less than 10-6.
This shows that seismic strain amplitude is marginal in this
regard. For example, a wave of displacement amplitude 1 cm
and wavelength 100 km gives its strain amplitude of 6 x 10-7
( = 2mA/\). (2) Knopoff (1959) argued that most suggested
viscoelastic linear mechanisms of attenuation in tlie mantle
show a strong frequency deperndence which is not observed in any

composite earth material in laboratory or in any seismic
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observations. However, Orowan (1967) and recently Liu et al.
(1976) showed that the frequency independence of Q is possible
by a superposition (distribution) of linear viscoelastic
mechanisms of relaxation using a box distribution function.

So far, many such distribution functions have been suggested
to explain various laboratory observations by metallurgists
and polymer scientists. On the occasion of this development,
we should louk thoroughly into a linear theory.

In Chapter IV, the linear theory forlattenuation is
discussed in phenomenological (mathematical) terms rather than
physical terms. The basic assumptions of linearity are the
superposition and causality principles. The superposition
principle allows us to treat Fodrier components which can
be reconstructed into a waveform. The causality principle
amounts to no ‘'signal before stimulus'

The fact nas been repeatedly stressed (Lomnitz, 1957;

Futterman, 1962; Jeffreys, 1965, 1975; Carpenter and Davies,

1966; Randall, 1976; Liu et al., 1976), but not always heeded,
that linear dissipation in solids gives rise to phase velocity
dispersion of first order in 0~! and that this intrinsic

dispersion is significant for the inversion of surface wave

phase velocitias and of normal mode periods. The dispersion-
attenuation relation over a frequency band in which Q-l is
independent ¢f frequency has been derived by somewhat
different roucrass by Kolsky (1956), Lomnitz (1957), and

Futterman (1962). Most physical mechanisms proposed to
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1 .account for dissipation in the earth are of the form of a
thermally activated shear relaxation (Jackson and Anderson,
-1970); the dispersion-attenuation relation for a relaxation
is given by Zener (1948). When a continuous distrabution of
relaxations is superposed to produce a Q'1 indeperdent of
frequency within a finite frequency band, the dispersion-
attenuation relation agrees with the constant Q"1 models

; (Liu et al., 1976). Because of a growing body of data

suggesting that Q increases with frequency above about 1 Hz

in the earth (see Solomon, 1972; Der and McElfresh 1977),

it is also useful to consider dispersion attenuation relations
in which Q has a power-law dependence on frequency (Jeffreys,
1958, 1965, 1975; Lamb, 1962). In Chapter Vv, a formulation
for simultaneous inversion of surface wave phase velocity and
attenuation is developed. Such a simultaneous treatment is
preferable to the traditional separate treatment f»or

several reasons. The two problems are intrinsically coupled
because of a dependence of phase velocity on the anelastic
structure and a sensitivity of surface wave attenuation to
changes in elastic structure. Further, if lineacrity holds,
the body wave phase velocity and attenﬁation at each depth

in the earth are related by integral transforms and in
general are frequency dependent. Finally, the elucidation

of the physical mechanisms governing dissipation is made

easier by tr-ating the intrinsic phase velocity and Q'1 in
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the earth as cependent in the analysis of resolution and
in the inversiou process.

The forward and inverse problems of surface wave
dispersion (or normal mode periods) and attenuation for an
anelastic earth have been treated by several workers. Schwab
and Knopoff (1971, 1972, 1973) developed the formalism for
computation o¢ dispersion and attenuation for surface waves
or free oscillations in a lossy earth and applied their
formalism to several earth models with frequency-independent
velocity and Q'l. Earth models for trequency dependent shear
velocity and Q-l based on an assumed set of relaxation
mechanisms and seismic data taken over a broad frequency
band were considered by Nur (1971) and Solomon (1972a).
Carpenter and Davies (1966), Randall (1976), and Liu et al.
(1976) have uiven an approximate correction to surface wave
phase velocities to account for the intrinsic dispersion
introduced by Jissipation. Using the correction appropriate

to Q'l

independent of frequency in the seismic wave band,
Anderson et al. (1977), Anderson and Hart (1976) and Hart
et al. (1976, 1977) used Q-l model MM8 of Anderson et al.
(1965) to adiust observed eigenfrequencies, and inverted the
corrected normal mode data sets to obtain earth models.

In Chapter V, we outline the formalism, based on a

generalization of Haskell's matrix treatment, for simultaneous

inversion of surface wave phase velocity and attenuation to

-
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obtain a complex, frequency dependent earth model. The
approach is mathematically more complete, and gives different
results, than the techniques mentioned above and allows
specification of the intrinsic disperion-attenuation
relation in the earth as an adjustable input. Revolution
analysis is extended for the above formalism using the two
variable treatment of Der and Landisman (1972).

In Chapter VI, resolving length analysis and extremal
inversion are applied to Love and Rayleigh wave data in
North America, and Rayleigh wave data in the eastarn Pacific.
To compare the simultaneous inversion with the data-corrected,
separate inversibn of Anderson and Hart (1976), weighted least-
square inversion is performed for Love wave data in western
North America. The results are sensitive to the dispersion-
attenuation relation in the low-Q zone and point toward future

experiments that might define the relation better.
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CHAPTER II

Set Theoretical Approach: Inversion Schemes

2.1 Resume

The geopliysical inverse problem aims to find out
possible models of earth structure consistent with gross
earth data. Gross earth data consist 6f mass, moment of
inertia, body wave travel times and attenuation, surface
wave phase velocity, group velocity and attenuation, free
oscillation periods, etc. The earth models we are
interested in are density, S-wave velocity, P-wave velocity,
23—1 and chl. Most times, we are interested in an inverse
problem for a linear system, starting with é reasonable
guess about one or more structural parameters inside the
earth, The perturbation of a structural parameter is linearly
related to smill changes in observables. The relationship
between observables and model can be specified by giving the

E: ; kernels G; (r) for the initial model m(r) as

1
‘4, = j Gi(r) m(r) dr

0

where d;(i = 1, ...N) is the difference between an observed
and predicted datum and r is the radial coordinate.

In practice, since the data available are finite, the
data are inaccurate, and our mathematical formulation is
approximate, the solution of the problem is non-unique.

This is the most serious problcm in geophysical inverse

, .
o ; ) -—-n.‘i
- S R
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theory. Therefore, an important task is to represent the
degree of non-uniqueness in a meaningful way. Backus and
Gilbert (1967, 1968, 1970) showed the optimal way of inferring
an earth model from a given data set. They introduced the
useful concepts of spatial resolution and trade-off between
resolution and error in the solution due to errors in the data.
For non-linear inverse problems,'mainly searching and testing
have been used to represent solutions. The Monte Carlo search
(Keilis-Borok and Yanovskaya, 1967; Press, 1970) and Hedgehog
search (Keilis-Borok and Yanovskaya, 1967; Press, 1970)

are two
approaches in this category. Jackson (1973) presented the
Edgehog method to quasi-linear problems to estimate extreme
models. Besides the limitations of linearity, the assumption
of Gaussian statistics of errors may not be valic for a
geophysical data set. The least square criterion is based
on the Gaussian distribution of errors. 1If this zssumption
is invalid, the minimization of the so-called L,-norm is
meaningless. Claerbout and Muir (1973) explored the
application of the Lj-norm to geophysical data analyses. In
the Lj-norm criterion, the sum of absolute values is minimized,
instead of the sum of squares as in the Ly-norm. A big
advantage of Ll-norm analysis is that, by taking fthe median,
the effect of a large error in a datum is effectively eliminated.

The linear p-ogramming approach adapted by Johnson (1972) to
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inversion of regionalized earth models is an L,-norm analysis.
Lee and Solomon (1975) extended this idea as the set theoretical
approach, combining square matrix inversion and the linear
programming me:hod.
2.2 Non-uniqueness, resolution and errors

All geophysical inverse problems involve some degree of
non-uniqueness. Often it is more serious than we believe.
The source of non~uniqueness is the finiteness of data in
number and extert, random errors in data, and some arbitrari-
ness of our physical assumptions. The resolving power approach
of Backus and Gilbert (1968, 1970) provides an excellent tool
for challenging this non-uniqueness. They showed that we can
determine only a smoothéd version of the solution (loss in
resolution). By calculating the resolving length by Backus
and Gilbert thecry, we could estimate how the details of a
model parameter could be pursued and how reliable they are.
Details smaller than the resolving length are invisible to
an observer with only M data. When we introduce random errors
in data, the s:tuation becomes worse. Backus and Gilbert (1970)
and Der et al. [1970) dealt with the question of resolving
length with ipaccurate data, in which the variance of solution
parameters and resolution (deltaness) are competing objectives.
More than one veiriable is invovled in an inversion process,
including the depth resolution of the desired variable, errors
in the solutior, and the separation between the desired and
undesired variables. Backus (1970) and Der et al. (1972)

discussed the two variable case with some examples.
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One of the main objectives of the inverse problem is to
resolve some important features in the structure, for
. example, a low velocity zone. Certainly such an objective
is a competing concept against uniqueness of the solution.
4 At the same time, we may lose the stability of tne problem.
| For this reason, for example in the generalized iaverse, small
eigenvalues of the kernel matrix are avoided to get a smoother
‘ solution.

2.3 Ly and Lz norm

In measure theory, the definition of the Lp norm is

g.ven by (Reiz and Nagy, 1965)

hmi , = <j [m(r)| Par P
N .
or by lmil P )l/p
i=1
P = 1, 2, ... , 00

which must be finite for valid members of L,- The reason for
introducing this norm is the intriguing property of the norm
that a certain statistical distribution of error and its
statistical average is related to a certain norm. We define
fimf], by the value of m which minimizes the sum of squared

differences between m and x (called the L2 norn) :

N
Hm"2 = m such that .Za {m - xi)2 is minimum.
i
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Taking the derivative with respect to m and setting it equal
to zero, we £ind jjmj| 2 is given by the definition of the
arithmatic mean. Now let us define ||m|| 1 by minimizing the

summed absolute values (called the Ly norm).

: N
fimjj ; = m such that 2 |jm- xij is minimum,
i=1

Again setting the derivative with respect to m egual to zero:

N
0 = > sgn (m ~ x;) |
i=1
Here the sign finction is +1 when the argument is positive, -1

when the argurent is negative. This Qdefines |iml|| 1 @5 a median.

One other norm vhich is of use with gecophysical data, is Lg

(Chebyshev norm) {Parker, 1972). The average defined by
Chebyshev norm as
1/p

umua° = m such that lim (g(m - xi)p) is min.

P2 i
The midpoint un¢h>bisccts the distance between the extreme
data ponints, fhus minimizing the maximum error. The
significance ¢f the Lj norm in the above argument is that a
blunder in data is cast off. The basic assumption behind L,
norm is the Gaussian statistics of error. If this assumption

is broken as in some geophysical data, least square modelling

is not an effective one. When some event is unpredictable

and gives a »ig error, Ll norm modelling has an advantageous
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robust effect (Claerbout and Muir, 1973). In many problems
the L2 norm is the natural norm. Most physical quantities

are defined in Hilbert svace which is also an Ly-norm vector
space. On the other hand, it is often unnatural to square
variables which are already positive, like energy, temperature,
density, Q, etc. When such quantities occur as measurements,
the asymmetric L; norm méy be the natural norm. Asymmetry

comes from the positivity condition. In this case, we have

o s

the usual linear programming technique. The least-square
type inversion methods are based on L, norm statistics.
2.4 Classifications of Inversion Schemes

Inversion Schemes which are in practice so far can be
classified in many different ways. If the system is completely
linear, or nearly linear (i.e., a linearized perturbation is
valid), most of the schemes belong to linear inversion. Non-
linear schemes include the searching techniques, such as Monte
Carlo search and Hedgehog search. The gradient mechod
(Marqgart, 1963) is another scheme for non-linear systems.
Jackson (1973) showed a remedy for quasi-linearity by letting
the data residual and 'smoothness criterion' go to extremes
(Edgehog method). In general, extreme model approaches have
a much wider range of linearity.

The single 'best' model has been an ultimate objective in
many inverse problems. However, suppose the nunber of

measurements is so small that the resolution leng:h exceeds
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the radius of the earth; then we must abandon the original
objective. Instead we only can pursue the possible range of
the model. If data have a large uncertainty, a single best
model may not ke meaningful. Searching procedures, such as
Monte Carlo, do not have a single 'best' criterion, but rather
produce extreme models (envelopes).
2.4a Single 'best' Model and Extreme Model Approach

In an inversion process, we desire to recover a best
model from curvently available geophysical data. The L,
norm approach nay give an upper and lower bound to the
solution space (envelopes). The least-square approach would
force such a case to have unique answer. The linear programming
technique is a gpecific L; norm approach. Extreme model
approaches such as Monte Carlo, Hedgehog, Edgehog and linear
programming give the advantages of exploring the possible
range of solutions and giving some indication of the degree of
uniqueness for a given data set. If there is a large
uncertainty in the data, such as Q-1 data, the best model may
not be meaningful.
2.4b Model ard Data Statistics

In a discrete linear inverse problem, we have, in matrix

notation:
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where A is a N x M matrix, and X and ¢ are column vectors with
M and N rows, respectively. In practice, we cannot measure

C exactly, but rather observe b = ¢ + n, where n is some

random noise accounting for errors of measurement. Accordingly

the form of the problem is

Ax +n=>»> (2.1)
where A and b are knowns, but x and n are unknowns.
1) Sstochastic inverse
Suppose we have a priori knowledge of the statistical
nature of x and n, where x, n and b are assumed tc be random

variables related to signal, noise and data processes, so that:

E{x} = m
Efn} =0
CE{T) = Ry
E{m"} = R

where E{g} denotes the expected value of x, and §; denotes the
transpose of x. If the~signal and noise processes are
independent, then E{§Q?} = E{pgT} = 0 and the linear estimator

L is (Jordan and Franklin, 1971)

|
|
|
)
|
|
I
1
‘
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_ T
E - ?xxﬁ ( ARD v By, ) (2.2)
With L defined above, the relations
x = oo + Lth-Am )
(2.3)
x = Lt form =0
yield a minimum-error covariance matrix S:
s = F fu-Du-HTY
(2.4)

E{x}] = m

From the above two equations, E{x] = E{}, so X is unbiased.
Therefore, the estimator L provides a global minimum of S.

One other important fact is that the above discussion is valid
for a non-Gaussian error as well as Gaussian. This estimator
is the stochactic inverse which was introduced to geophysical
problem by Franklin (1970) and by Jordan and Franklin (1971).
The construction of correlation operators Bxx and Bnn was
discussed by Jordan and Franklin (1971) and Wiggins (1972).
For the noise correlation, Rnn+ it is rather easy to form a

covariance mat)»ix if the observational errors are uncorrelated.

In such a case, the covariance matrix has the following
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representation:
( cri 0 0o .. 0 1
0 CT% 0 . 0
*an T 2 (2.5)
=nn 0 0 T3 .. 0 .
0 0o 0 aoh
/

where the diagonal element(ji is the variance of the i-th
noise component. The construction of the solution covariance
matrix is, however, rather subtle. In a sense, ng acts as a
filtration operator which discards unreasonable sclutions on
the basis of physical constraints defined by the resolving
power of the data. If equation (2.1) is written as a
perturbation equation, then fxx converges to a scalar times
the identity matrix for perfect resolving power (Franklin,
1970). Wiggins (1972) introduced an N x N weighting matrix W
assumed to be a diagonal matrix with each element wj;
proportional to the dimension of the i-th solution parameter.
2) Weighted least square inverse

Suppose we do not have a prio Qnowledge of the statistics
of the solution, but we do have a nc/se covariance matrix.

Then consider ~




Choose x that minimizes

Jx) = (- AaTR "M - Ax)

Such a solution is given by

2J (x) 2Tk 71 b -ax) = o0
X = =Nnn - = -
(2.6)
T, -1 -1 .7, ~1
x = | ARmn 2 ) A2 B b
roviding that (ATR “1a)71 exists. For (aT '-]"A)_l to exist
P d =z zhn = ) = -l}nn = "

it is necessary that the dimension of E is not smaller than

that of X. The weighted least square inverse L yields the

minimum error covariance matrix S where
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T, -1 -1 T -1

L = | R
= znn

1>
1w
">
-l

and

S

e {x-Hux-dT) = (Tl

1l
0§

In the case of M > N, S does not exist. For this situation,
Lanczos's (1961) analysis and Gilbert's (1971) mirimum solution
could ke used to solve the underdetermined problem.
3) Set theoretical approach

Suppose, unlike the previous cases, the statistical
structure of neither X nor n is known, but rather X and n are

constrained to lie in specified sets:

m
O

13
Mm
o)

whereSlx andS)n are sets in M- and N-dimensional spaces,
respectively. In particular, these sets can be folyhedrons
for L; norm modelling and ellipsoids for L2 nérm modelling.
The latter case is the Edgehog method presented by Jackson
(1973). The former case is square matrix inverse and linear
programming technique (lee and Solomon, 1975).

2.5 Set theoretical approach for attenuation

Let x and n be cénstrained to lie in specified sets:

x €Q = {x x>0, 3=1,2, .. ,M}
(2.7)
n € 'Q'n = {'l’ ni< O‘i, i=1,2, .. ,N}
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where.Qx andSln are sets in M- and N-dimensional spaces,
respectively. These constraints amount to the condition that
the solution be positive and that the data lie within the error
bounds. The observations b specify N hyperplanes in M-
dimensional so'ution space. These hyperplanes provide a set

of solutions which is required to be constrained byS}n such

that

%

_).(. e I))‘X/b = { ).i; .b.- e Q } (2.8)

- n

Since the solution set must satisfy the positiveness condition,

X must lie in the intersection ofS)x andSZx/b. LetSlsol denote

this intersectioa:

I %
M
)
1
o)
D
Q

(2.9)

Two alternative views of the constraints (2.8) lead to two
different but complementary set theoretical approaches. If we
use mean hyperplanes as constraints, the approach is via the
square matrix inverse, If we use extremal hyperplanes as
constraints. it is via the linear programming method.

2.5a Square matrix method. The linear problem expressed
in the following (1.3) egquation may be regarded as one for

which there are N constraints, cr equations, and M unknowns.
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M .
JZaijxj = bi' i=11,2, .. ,N

Each constraint represents an M-1 dimensional hyperplane. In
M-dimensional space, M constraints will provide a point which
is the intersection of M hyperplanes. There are NCM (M
combinations out of N) number of such points in M-dimensional
space. In matrix terms, from the N x M original watrix, we can
choose \C, square matrices which will provide NCM Sets of

solutions, i.e.

-]

kf = ?k ’ k = 1'2, P ’ NCM .(2010)

where gk and by are an M x M matrix and M-dimensional column
vector, respectively. The solutions that satisfy equation
(2.10) and fit the data to within the error bars will form a
setSlx/b. Therefore, the solution domain is defined as the
intersection betweenSlx/b andS}x. By (2.10) the 2stimate of
the vector x is defined as a set, not as a single vector. We
need a specific way of determining which vector within the
solution domain,Slsol, is the proper estimate of x. Naturally.
a reasonable choice of such an estimate is to define x as a

center of where the center can be defined in the way of

sol’
averaging the elements of the set. The set of solutions must
not be empty if our hypotheses on the system are correct.

Therefore, this technique can be used for ' :othesis testing.
The term 'hypothesis' here includes the parameterizations and

the assumptirns used to construct the model. The most sensitive

such hypotheses are the determination of layer th.ckness and
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an adequate assunption of frequency dependence of Q-l.

2.5b Linear programming method. The linear programming
technique (Dantzig 1963) is similar in concept to the square
matrix inverse but differs in motivation. The philosophy is
to build an envelope of possible models rather than a best
model as in the other approaches discussed. To get maxima
and minima of the model parameters, constraints are obtained
from inaccurate observations such that the true value for
each data point is within some tolerance, e.g. the standard
deviation. From each of our original equations (1.3) we get

two constraints:

[\
x
tv
=2
|
(™
it
-
N
b

(2.11)
M . 1.2
jél aijxj _<_ bl + o-i !’ 1 = i ’ v 'N
where cg is the standard deviation of ith observation. Each
inaccurate datun restricts possible solutions to the space

sandwiched between the hyperplanes defined by the equations:

-
-

min

< = -
J‘_;L aleJ = bi 0-1 .
M (2.12)
S a. .xt* = p o+ .
bl i373 i i
j=

i=1, 2, . N

-




The region of space containing points satisfying 2ll 2N

constraints will be the intersection of all these sandwiched
regions and of §,. This intersection will be referred to as
the solution domainflsol. This setSlsol is a corvex set, in
that all points lying on a line connecting any two interior

points also must lie within the set. Further discussions of

this technique may be found in ihe original development of
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Dantzig (1963) and in Johnson's (1972) adaptaticn of the method

to inversion of regionalized earth models.
2.5¢ Ellipsoids: Edgehog

Now assume thatSl, and.Qn are ellipsoids:

Q = {w a-n)Tx-my < 1)
Q, = {m (2"xlny < 1}
Then
Q. - {x ©-20"" b-rm < 1} (2.13)
Qe = K, N .Qx/b
where
\
s = [ gt o o .. 0
o g3 o .. 0
0 0 0 o2
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With a weighting matrix B'Slsol is generally an ellipsoid.
If the principal axis system is used,Slx/b is represented by
an ellipsoid because each axis direction is weighted by
eigenvalues.

2.6.1 Data

The surface wave attenuation observations we shall use to

infer Q"1

structure come from two different regions in North
America. The first set of data, given in Table 2.1, and
referred to as data set 1 below comes from two-station
measurements of Love-wave and Rayleigh-wave attenuation between
WWSSN stations at Longmire, Washington ana Tucson, Arizona
(Solomon 1971, 1972a). The reciprocal of the group velocity

U and the atteniation coefficient k*(= £/QU) are each the
average of independent determinations using southward and
northward travelling waves. Standard deviations are shown at
frequencies for which more than one measurement was possible in
each directicn. Earthquake sources, all lying approximately on
the great circle through LON and TUC, are in Alaska (5), Asia
(2), Mexico (2) and Chile (1). The LON-TUC path samples |
primarily the tectonically active Basin and Range physio-
graphic provirce (Fig. 2.1). .

The second set of data, given in Table 2.2 is for east-
central United States and comes from two sources. The first
source consists of two-station measurements (Solomon 1971,
1972b) of QL'l and QR"1 between Rapid City, South Dakota and
Atlanta, Georgia (one direction only) for earthquakes in the

Aleutians (5) and the Caroline Ids. (i).
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1

Fig. 2.1.Paths used for two-station surface wave Q
measurements, shown superposed on the outlines of the
physiographic provinces of the United States. The
shaded region is approximately the area represented

by Mitchell's (1973a,b) measurements.
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Standard deviat:ons are shown where repeated measurements were
made. The RCD-ATL péth samples primarily the stable platform
region of the Great Plains and Central Lowland physiographic
provinces (Fig. 2.1). The second source of data is Mitchell's
(1973a,b) measarement of Rayleigh wave and Love wave
attenuation from the southeastern Missouri earthquake of 1965
October 21. The determinations of QL'l and QR'1 were derived
from amplitude measurements at a number of seismograph stations
between the Rocky and Appalachian mountains and between the
Gulf coast ard the Canadian shield, based on the assumption
that the properties of individual surface-wave paths are
approximately uniform over the area sampled (Fig. 2.1).
Uncertainties are assumed for Mitchell's reported values of k¥,
and Q"l was calculated using the surface wave group velocities
from McEvilly's (1964) model for central United States. The
measurements of Solomon (1971, 1972b) are referred to as data
set 2 below. A third data set is formed by combining Solomon's
observations with the shorter-period measurements

(f > 0.04 Hz for Q;~1, £ > 0.0286 Hz for Qg~1) of Mitchell
(1973a,b).

The phasz velocity partial derivatives aj 4 (equations 1.2
and 1.3) were calculated using computer programs written by
Harkrider (19t4). For western United States, the plane-layered
velocity-density model used for these calculations were taken

from model 35CM2 of Alexander (1963) above 125 km and from
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models NTS N3 of Julian (1970) and US 26 of Anderson and
Julian (1969) below that depth. For east~central United
States, the (isotropic) velocity-density model of McEvilly
(1964) was adopted.

To apply the inversion techniques of the preceding section
to those observations of surface wave attenuatior, resolving
power analysis is an essential step. We then hav2 to
establish criteria to obtain independent information about
the model and to detect.incompatible observations. Finally we
may solve the inverse problem.

2.6. 2 Resolution

Study of the resolution and error of observeational
measurements is useful in selecting the manner in which a
continuous function of depth Q _l(z) can be approximated by a
function constant within a small number of layers, so that our
linear system is overdetermined. Such a study can also yield
criteria for estimating the reliability of the inversion
results. In the set theoretical approach, it is required that
solution vectors be independent. An excessive number of layers
can cause instability of the inversion and an interdependence
of solution vectors. Backus and Gilbert (1967, 1968) have
treated the general problem of vertical resolution from a finite
set of error-free observations. If we take the large observa-
tional errors into consideration, the resolution is considerably

worsened. The relationship between observationa) errors and
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resolution has been discussed by Der et al. (1970), Backus
and Gilbert (1970) and Wiggins (1972).

In the scheme of Der et al. {1970), the idea is to
minimize simultaneously both the variance of the linear
combination xy of observations that gives the best estimate of
some physical parameter of interest in a certain layer k and
the dependence of x); on the parameters for layers other than

the kth. This is accomplished by minimizing the function

= > . . j k 2.14
E, Bver x, + jéi Wy e ¢ 3 # ( )
subject to
N
Cxxk = i§1 ki 2ix = 1
where
N
ey = X Gy 23y ¢ Ik

and where wj is a layer thickness, a;y is the partial
derivative of the ith observation with respect to the parameter
of interest in layer k, normalized with respect to the layer
thickness, eyy is delta-function-like and e;, is the deviation

J
from a delta function, and the Cxj are constants to be
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Fig. 2.2 Resolution of surface wave attenuation data at
selected depths for (a) data set 1 (western United
States), (b) data set 2 (east-central United States),
(c) data set 3-(east-central United States!. The
letter v shows the center of the layer kX fcr which

equation (2.14) is evaluated.
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determined subsequently. The quantityz? is an adjustable
parameter that determines which of the two minimizations is
to be more effective. If the desired value for var x) is

too small or too large, i.e. [/ is chosen to be to> small

or too large for the two minimizations to balance, the result
will not be physically meaningful. When f is zero, the
problem corresponds to the case of error~free obs2arvations.

The resolution analysis of Der et al. (1970) applied to the
surface wave observations introduced above allows us to
asgess the vertical resolving length of the data. The
functions ejk are plotted for selected layers k in Fig. 2.2a
for data set 1, Fig. 2.2b for data set 2, and Fig.2.2c for
data set 3. The parameterﬂ in 2.14 is adjusted so that the
variance of xx is 0.5. From Fig. 2.2 it may be observed that
the resolving power of QL'l data is generally ponrer than for
QR'l data. We estimate from the suite of resolving lengths
that the allowable number of layers in a model‘for Q -1 is
3 or 4 for Love and Rayleigh waves, respectively, in data sets
l and 3, and 2 or 3 for Love and Rayleigh waves, respectively,
in data set 2.

Because the above analysis is valid only fcr independent
observations, we can get only a rough idea about the layer
thicknesses without knowing the co-variance matrix of error.
Since the number of layers is few, determination of the layer
thicknesses .s very important. Therefore, it will be

interesting to consider the limitations on layer thicknesses
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imposed by the set theoretical constraints.

A simple example will serve to show the utility of a
geometrical picture of the constraints. In M-dimensional
space, these constréints are in general hyperplanes. For
ease of visuali:zation, let us imagine a 2-dimensional solution
space, which is not all that unreasonable since there is only
one significant jump in the value of %g-l at the boundary
between lithosphere and asthenosphere. 1In that case the
constraints are straight lines in the solution plane. The
slope of a family of lines is determined by the matrix
elements and the axis-intersections are determined by the
observations.

To illustrate this idea, we take the case of nine
fepresentative Love wave attenuation data from Table 2.1. If
we choose the boundary between layers at 65 km or at 50 km
depth, the respective 2-dimensional representation of
constraints in solution space are shown in Fig. 2.3, where the
solid lines correspond to the case of the 65 km depth boundary
and the dashed lines correspond to the case of the 50 km depth
boundary. As we can see, the family of solid lines (constraints)
provides a set of converging points in the domain of positive x3
and x5 (first quadrant) while the other f&mily does not. This
exercise implies that a bad choice of the layer thickness will
make the hyperplanes nearly parallel and the solution domain

empty. In Fig. 2.3 we have a clear choice between two-layer

parameterizations. Graphic representation is impossible for
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Fig. 2.3, Constraints in two-dimensional solution space.

A two-layer Q"1 model is assumed. The boundary is at

65 km depth for the constraints §hown as solid lines,

50 km depth for those shown as dashed lines. The number
besidc each line indicates the selected datum from
Table 2.1 (Q; ', western United States). (insert) An
amplified view of the dotted region. The shaded area
represents the solution domain. It may be seen that
constraints 1 and 2, and constraints 5, 7, 8 and 9 are

correlated: constraint 6 is incompatible.

e
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the M-dimensional case, but we can in analogous feshion
optimize the M layer thicknesses by use of the square matrix
inverse. That is, by choosing an appropriate set¢ of layer
thicknesses, hyperplanes can be focused in solution space.
As a measure of focusing, we define a focusing index fgq =
pj/qj, where Pj is the percentage of aéceptable solutions from
the square matrix inverse and thus is related to Low well
models with such layering can'fit the data, and 15 is the
volume of the solution domain in M-dimensional solution space.
The index j locps over all possible choices of the set of
layer thicknesses. Some exampies of the dependence of f° on
the layering in the Q"1 model are given in Table 2.3; the
highest value of f, is the preferable layer parameterization.
2.6. 3 Correlation and Incompatibility

Generally, each observation does not contrioute
independent information about the model. This is because of
the high correlation of the partial derivatives of surface
wave phase velocity at near frequencies. Correlation gets
even higher when the observational error is large. According
to the resolution analysis in the preceding section, the
number of layers allowed in the model is few (three or four).
Therefore, our problem is overdetermined, i.e. N is 20 or more
and M is three or four. Somehow, we need a criterion that
two data are independent or uncorrelated for a ‘'simple’

co-variance matrix to be constructed. The meaning of ‘'simple’




TABLE 2.3 Use of the square matrix inverse to fix layer
thicknesses for a 3-layered Q'"1 model: Love

wave data, western United States

Layer interface Focusing index £

depths, km -

17, 64 235

15, 74 122

21, 69 ' . 202

21, 74 , 71

21, 64 : 418.

.25, 64 290




matrix is a weighting matrix chosen by reasonable judgement

to utilize the weighted least square inverse. Oun the other
hand, if the observational value of Q"1l(f) is cortaminated
by effects other than the anelasticity of the Earth or by
rougﬁ measurements, some data will be incompatible. To be
more precise, we define 'correlated' and 'incompatible' data
in terms of square matrix resolution:

Two data are correlated if their correspondxng hyperplanes
in solution space do not intersect inside the fezsible solution
domain but do contribute to build the domain. A datum is
incompatible if its hyperplane does not contribuze to build
the domain of feésible salutions. These definitinns are
illustrated in Fig. 2.3.

We may pursue the geometric picture of each datum as a
constraint somewhat further. Equation 1.3 represents a set of
M-1 dimensional hyperplanes. A pertinent geometrical parameter
of a pair of hyperplanes is the angle between them. The angle

between hyperplanes is defined as

M
2 23525k
cos 6 =
ik /M 2 M
€ 2 a;5 2 aj)
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This angle is tae coefficient of correlation if observations
are error free. With observational errors in consideration,

we define the correlation length (in the same units as the xj)

as
2 1/2
[o 8 g. g . o %
Dij - ( S NN ( B + 2 i j_ cos8 ij
sin ei. sin eij sin eij51n eij
where eij is the angle between ith and jth hyperplane, and<7&

and oy are the standard deviations of ith and jth observations
(see Fig. 2.4). The same value of error in an observation will
cause a relatively different error in the solution space, in
proportion to the correlation length. This is the geometrical
meaning of our definition of correlatiﬁn (refer to Table 2.4).

As an example, for the same selected QL—l data in western
United States, square matrix resolution gives the following
results with a three-layer model (boundaries at 20 and 65 km;
see Table 2.3). .

{1) Twenty-one feasible solutions exist among 84 (=9C3)

posstible solutions.

(2) pata 1 and 2, and data 8 and 9 are correlated.

(3) patu 6 and 7 are incompatible with the remaining dapa.

The incompatible'data lie in the range of surface-wave
periods where 2 "'minimum'’ in Q'l has been noted (Trggvason
1965; Tsai and Aki 1969). Tsai and Aki (1969) explained this

minimum as dve to frequency-dependent Q'1 in the lithosphere.




' 154.

Fig. 2.4. Correlation length Dij between ith and jth
constraints. CTi andkOB are the standard deviations

for the ith and jth observations, respectively.

L T T St T e st e
e s o m———
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TABLE 2.4 Correlation length Dij between selected QL.l data,

western United States.

2 3 4 5 6 7 8 9 i/ 3

20.57 3.68 1.12 0.58 1.22 0.30 0.28 0.27 1

8.65 1.64 0.74 1.46 0.34 0.32 0.31 2

6.36 1.79 2.70 0.66 0.57 0.54 3

7.67 7.37 1.24 0.97 0.86 4

56.23 2.99 1.89 1.55 5

15.89 7.93 5.99 6

, ' | | | 20.87 12.92 1
| ‘ 109.46 8
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However, the question is still open because no model can
explain nearly rero attenuation. One possible explanation

may be ; constructive interference in the period range of
minimum Q'1 due to scattering. At any rate, the occurrence

of incompatible data in this period range (20-25s) is not
accidental. Therefore, we can assume that data 1, 3, 4, 5 and
9 are independent (uncorrelated) and we could apply the

weighted least square inverse using the co-variance matrix, R:

(62 0o o 0o o )
0o g5 0 0 0
R = o 0 gZ o o0
- o o0 0o gi O
| o o 0o o os )

2.6. 4 Linear »rogramming procedure

The essence of the linear programming problem is camposed
of fcur parts: 1) a set of M independent variables; 2) a priori
bounds on thos=2 variables; 3) a set of constraints, cast in
terms of linear equations and inequalities; 4) a linear
function, called the object function, which is to be minimized
subject to thcse constraints. The independence of the ’

variables (solution parameters) as discussed above in terms

of resolutioa analysis indicates that
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1) By square matrix resolution with Love wave or Rayleigh
wave data, the optimum layer boundaries are at 20 ‘':a and 85 km
depth for western US (data set l), 135 km depth for data set 2
(east-central US) and 25 km and 135 km depth for data set 3.
Hereafter we refer to these as major boundaries. Note these
depths are uncertain by several kilometers.

2) The resolution of Rayleigh wave and Love wave data
together is improved over that using either set of data
separately. '

Therefore the number of degrees of freedom, or the number
of independent variables, are flexible to a certain extent
due to the relaxation of constraints using extremal hyperplanes
and the above result 2. We will increase the number of
boundaries carefully until the fit to the data is no longer
improved over that using only the major boundaries. The result
of this procedure is a 6 layer Q‘;l model in western US and 4
and 5 layer models in east-central US (data sets 2 and 3,
respectively). During the process of increasing {he number of
layers, the original 2 or 3 layer model with major boundaries

1

is used as a guide to reduce large fluctuations in Qh- between

successive layers. If the 3 layer model parameter x; is split

into two others, x;' and x;", then

lo; < x < up;

] LJ
lo; < ay%; +byix; < upy
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where lo; and up; are lower and upper bounds of the model
parameter x;, d2rived from the linear programming procedure
using 6nly maior boundaries, and a; and bi are the fractions
of the originel layer allotted to the two new layers. The

a priori bounds used.for the initial linear programming
inversion, are defined as 0 < xi<( 100 (where x; = 100/Q;).

i
The object function is defined as

where + is for the minimum and - is for the maximum of the
envelope. Data indicated to be incompatible by square matrix
resolution anelysis are not included in the linear programming
inversion.

2.6.5 Resulc and discussion

The envelopes of the attenuation models %?°1(z) resulting
from the final linear programming inversion and illustrated in
Fig. 2.5 are given in Table 2.5. The corresponding envelopes
0, "L(f) and 0;"1(f) are shown in Fig. 2.6 together with all
data used in *he inversion.

For Love wave attenuation in western United States, the
greatest disajreement between observed and predicted values
comes from the period range 15-25 s. For Rayleigh wave
attenuation in the same region, on the other hand, the
disagreement comes from the period range between 30 and 40 s.

These two mismatches mean that a frequency independent %6'1
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Fig. 2.5. Envelopes of attenuation models for (a) data
gset 1 (western United States), (b) data set 2 (east-
central United States), (c¢) data set 3 (east-central

United States).
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TABLE 2.5a Envelope of attenuation model, 100/QB. western

United States

Depth, km min max
0-21 o 0.43 0.54
22-45 | © 0.0 0.05
46-84 | . 0.0 0.03
85-104 3.50 4.87 -
105-160 . 4.95 5.73
161-350 2,60 2.69

TABLE 2.5b Envelope of attenuation model, IOO/QB, east~central
. United States (data set 2)

Depth, km min max

0-72 X 0.06 0.08
73-134 _ 0.0 0.09
135-212 2.19 2.48
213-350 2.29 2.57

AY

TABLE 2.5¢c Envelope of attenuation model, 100/06' east-central

| United States (data set 3) _ .
Depth, km : . min . max -
0-9 - 1 0.29 0.86
10-23 | 0.25 . 0.84
24-52 . 0.0 ' 0.15
53-134 0.0 0.17

135-350 . 1.09 2.51




Fig. 2.6. Surface wave attenuation predicted by envelope

of models in Fig. 2.5 (solid lines). Triangles and
circles represent the observed values (Table 2.1 and
2.2); open symbols are for incampatible data. Love

and Rayleigh wave ol are given in (a) and (b) for

data set 1, (c) and (d) for data set 2 and (e) and

(f) for data set 3.
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model can never simultaneously approach a perfect fit to both
sets of data. The same statement is true of plausible

* | frequency~-dependent ()g models (Solomon 1972a), e.g. models

] obtained by inverting'equation 1.5. This difficulty is related

to the minimum in QL-1 and QR'l versus period noted earlier

(Tryggvason 1965; Tsai and Aki 1969) and t6 other wiggles in

the attenuation curves. The wiggles in QR”l, which are
especially pronounced, may possibly be a scattering effect.

The total travel length L is 2000 km and the wavelength A

is 60-150 km, so kL = 80-200, where k is the wave number. For
scattering from weak heterogeneities in elastic properties and
density to be negligible, ka must be less than 0.4, where a is
the correlation length or, roughly, the characteristic dimension
of the heterogeneities (Chernov 1960). Since ka < 0.4 would
require a < 4-10 km, scattering is not likely to be a negligible
effect. !

For east-central United States, the frequeacy independent
model provides an acceptable fit to the data except for a
discrepancy between Qi’l and QR'1 in the period range 30-36s.

The high attenuation of Love waves in that period range may
either be due to higher mode interference, more likely for Love
waves than Rayleigh, or due to anisotropy of the attenuation
mechanism,

Several results of the QB"1 models in Table 2.5 and Figure 2.5
are worthy of comment. It is clear that the lithosphere, iden-

tified with low Q'l, and the asthenosphere, identified as a
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deeper zone of high Q-l, both differ between western and
central or eastern North America. The lithosphere is thicker
and Q!;l in the astpenOSphere is significantly less in east-
central than in western United States.

We obtain lithosphere thicknesses of 80+20 km and
130+30 km for western and east-central United States,
respectively. The range in thicknesses comes from separate
inversions of Love and Rayleigh wave attenuation and is
conservative in that inversion using both sets of data gives
a narrower range of thicknesses for both regions. These
values for li:zhosphere thickness are not out of line with
those inferred from the distribution of seismic velocity with
depth using eitrer refraction results (Green and Hales 1968;
Julian 1970) or dispersion data (Biswas and Knopoff 1974).

The value ftor Q -1

B
factor of about 2 between the two regions, in agreement with

in the asthenosphere differs by a

the results of Solomon (1972a). Both this difference in

QB"1 and the different lithosphere thickness can be explained
by a modest temperature contrast in the upper mantle between
the two areas (Solomon 1972a).

Some fine structure is notable in the models. A decrease
in QB-l with depth in the lithosphere is resolvable from data
sets 1 and 3, a result also obtained by Mitchell (1973b).

The interpretation of this conclusion depends on the seismic

loss mechanisms. but the models are consistent with a closing

- ea—— -
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of fluid-filled cracks or a decrease of volatile content

with depth in the lithosphere. It also appears that a
-1
B

western United States.

decrease in Q below about 160 km is resolvable in

In summary, there are difficulties in modelling the
attenuation of surface waves that arise from an assortment of
reasons: 1) the loss mechanism at high pressure and
temperature in the Earth is imperfectly known; 2) the
measurement error is large and data are sparse; and 3)
attenuation by mechanisms other than anelasticity is not
negligible and not always separable. At this stage, under
the assumption that the interference to the true anelastic
attenuation is localized to some period range, our rules of
data correlation and incompatibility are a reasonable filter
to sort out which measurements are suitable for inversion.
The QB'l models that result from the inversion offer several
insights into the nature of the lithosphere and asthenosphere.

In the next three chapters, we will formulate the
simultaneous inversioh of not only surface wave attenuation
but also surface wave phase velocity. A major justification
for this approach is because the anelastic dispersion from
linearity seems to be important in the inversion process of
surface waves. The validity of linearity is first reviewed

in terms of the possible mechanisms for seismic-wave damping

in the earth's mantle.
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CHAPTER 111

Attenuation Mechanisms in the Upper Mantle

3.1 Resume

The deviations from perfect elastic behavior of a sample
matérial in the laboratory have yet te be understood. The
situation ip the earth's mantle is expected to be at least
as complicated. A stress wave propagating througﬁ’a non-
elastic medium experiences an attenuation of amplitude due
to various processes. These processes have not been well
understood in terms of atomic or ionic (microscopic)
properties of fhe material; rather they have been lumped under
the heading internal friction.

Standard models have been used to describe internal
friction in terms of various combirations of springs (perfect
elasticity) and dashpots (Newtonian fluid). The Maxwell
solid, the Kelvin-Voigt solid and the standard linear solid
are gxamples of such models. Surely, these standard models
do not explain reality most times. Orowan (1967) suggested
that in a composite material, such as the earth's mantle, it
is necessary t> invoke the more general arrangement of springs
and dashpots for each molecular constituent; the standard
linear solid with an additional dashpot corresponding to the
viscous deformation. Such a general arrangement does not
explain the direct observations regarding the non-elastic

properties of the earth: the attenuation of seismic waves.

1
!
i
i
v
i




176.

However, it provides a diagrammatic convenience and a way

of thinking macroscopically. Although most lahoratory
experiments are performed at conditions different from the
earth's mantle, they may provide sound bases for a 'thought
experiment'. The possible theoretical mechanisms of seismic
attenuation have been reviewed at length by Jackson and
Anderson (1970). Among the many suggested, the possible
mechanisms in the asthenosphere are of greatest interest
since most absorption occurs there. Solomon (1971, 1972)
thoroughly examined partial melting in terms cf Walsh's
model (1968, 1969) and Jackson examined a grain boundary
relaxation model (1969, 1971). 1In this chapter, we are going
to review some aspects of the attenuation mechenism which will

be important in the following chapters.

3.2 Seismic and laboratory observations

One of the earliest and most important obs=rvations in
the laboratory was that Q is substantially independent of
frequency in a solid at low pressures and temperature. Since
Linsay (1914) first made this observation, many investigators
have verified the fact with different materials (composite
non-metals) over a broad range of frequencies, For earth
materials, the conclusion is the same. Knopoff and Porter
(1963) showed that in granite the attenuation of Rayleigh
waves over the frequency range 50-400 kHz appears to have a Q

nearly independent of frequency. At higher frequencies, a
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fourth power law of attenuation becomes dominant in their
observations, which suggests a Rayleigh scattering process.
Similar results have been observed in limestone by Peselnick
and Outerbridge (1961). Born (1941) studied sandstone which
had varying amounts of interstitial water injected into the
sample. The interesting result is that the dry rock has a
frequency-independent Q while the wet rock has a Q increasing
linearly with frequency. Another important observation is
that Q for rock, again, at low pressure and temperature, is an
order of magnitude lower than for single crystal materials.
Peselnick and Zietz (1959) indicate that Q for calcite is about
1900, a factor of 10 greater than in limestone, which is
polycrystalline calcite. This suggests that grain boundary
effects are likely important and show the same frequency
dependence of Q for single crystals and composite materials.
Few observations on the behavior of Q at near melting
temperatures have been performed. Mizutani aﬁd Kanamori
(1964) measured the elastic and anelastic properties of a
Pb-Bi-Sn-Cd alloy of melting point 72°C from 10 to 130°C at
near MHz frequencies. They observed that the elastic
velocity decreases with temperature. The decrease accelerages
near the melting point and is most pronounced for shear waves.
The quality factor, Q, for P-waves increases almost linearly
with frequency between 0.5 and 3.0 MHz. Kuroiwa (1964) and
Spetzler and Anderson (1968) studied attenuation in the

various forms of ice at temperatures near the melting point.
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They found that the introduction of NaCl into the ice
broadened the peaks, shifted them to lower temperatures and
increased the pea& damping. The background daniping,
attributed to grain boundary effects, increased with
increasing content of an impurity. Goetze (1969) discussed
the behavior of metals at near meltin§ temperatnre.

The intrinsic attenuation of rocks as a furction of

temperature and pressure is not known. Some laboratory
measurements of hysteresis loops for strains no less than
10" shows that the attenuation is dependent on the amplitude
of the strain (McKavanagh and Stacey, 1964). This suggests
that linear theories are valid only at stréin amplitude less
than 10-5, '

For seismic observations, the most commor difficulty is
that the influence of scattering due to hetercgeneity cannot
be removed. Earlier obéervations by Cellins and Lee (1956) and

by McDonal et al. (1958) were measured at a small number of

stations in relatively homogeneous short range of less than 30 feet.
By no surprise, their observations in the field gave results
comparable to those obtained in the laboratory¢ on homogeneous
rocks. Their main finding was that Q is near.y independent
of frequency over the frequency range 100 to 1070 Hz (50-550
Hz for McDonal et al.). Among many observaticns by other
investigators, Anderson and Kovach (1964) observed multiple

reflections from deep focus earthquake in Brazil recorded in




Peru. They indicated that for the upper mantle Q in shear is
about 160 and for the lower mantle about 1450, and @ is
roughly independeat of frequency over the range 11 to 25
seconds for the entire mantle.

| Since that time, the observations of Love and Rayleigh
wave attenuation has been cons;dered to be more reliable than
body wave observations, because the surface waves are less
subject to the effects of scattering by inhomogeneity.
However, the interpretetion is more complicated due to strong
dispersion. Benioff et al. (1961) measured the attenuation of
Rayleigh wavers from the Chilean earthquake and summarized that
there is significantly more attenuation in Love waves than in
Rayleigh waves. 'This may be an.indication that the attenuation
due to pure conpressive modulus is negligible. The presently

available surface wave attenuation data covers North America

(Solomon, 1971; Mitchell, 1973, 1975), Eurasia (Yacoub and
Mitchell, 1977; Burton, 1974), the Pacific Ocean (Mitchell

et al., 976) the Atlantic Ocean (mostly) (Tsai and Aki, 1969).
Also there are many useful great-circle path data (e.g.,
Kanamori, 1970: Dziewonski and Landisman, 1970). These data
clearly show a regiongl variation over much of the common
period range. One cause is the varying lithospheric

thicknesses reaionally. For example, the lithosphere

thickness in western U.S. (a tectonic region) is about 80 km
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while that in eastern U.S. (a stable shield region) is about
! 130 km (see Chapter Il1) and that of the average Pacific

] ocean is 60 km (Mitchell et al., 1976). Recent body wave
observations (Solomon, 1972b; Der and McElfresh, 1977)

suggest that Q increases with frequency above 1 Hz.

3.3 Nonlinear or linear attenuation process?

Knopoff and McDonald (1958) argued that the observed
‘constant Q' for seismic wave attenuation is incompatible
with linear theory. They developed a non-linear wave
equation in which dry friction is the attenuation mechanism.
McKavanagh and Stacey (1974) suggested that a cusp at the
end of stress-strain hysteresis loops at strain amplitudes
down to 10-6 may be evidence of non-linearity. The question
of linearity vs. non-linearity is very important because the
linear theory makes the'general problem of attenuation of
non-sinusoidal waveforms mathematically tractable. 1In other
words, waves .an be superposed by Fourier components without
modifying one another. Kogan (1966) criticized the non-~linear
the;ry based on experimental evidence. Savage and Hasegawa
(1967) presented similar criticism. Lomnitz (1957, 1962)
suggested a linear theory which attributes the attenuation of
elastic waves in polycrystalline materials to logarithmic
creep. The theory predicts both the magnitude of Q and its
frequency independence. McDonal et al. (1958) and Knopoff

and Porter (1963) have investigated the attenua:ion of a
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seismic pulse rather than the usual harmonic waves. The
procedure emgloyed in both experiments was to analyze the
pulse into its Fourier components and then determine Q as a
function of frequency fram the attenuation of various

Fourier comporents. The magnitude of Q determined from the
Fourier components and insensitive frequency dependence
suggest that the superposition principle was applicable and
therefore, the mechanism of attenuation linear. Orowan

(1967) and Liu et al. (1976) suggested ‘constant Q' observation
can be explainable in the linear theory assuming the presence
of a continuous distribution of linear visco-elastic elements.
Above all, non-linearity becomes apparent in waves of
extremely large amplitudes and so has little relevance to
seismic waves. For example, a wave of displacement amplitude
1 mm and wavelength 10 km gives its strain amplitude of

6 x 10'7

= 2TTA/)\). One more possible argument for non-
linearity is the non-existence of body wave dispersion since
dispersion due tc absorption is a characteristic of the linear
theory. Altaough this question will be addressed in the next

chapter, the frequency dependence of Q may provide the answer

to such an srgument, a point also suggested by many others.’

3.4 Solid friction and viscous damping
Perfectly dry rock is not expected to occur in the earth

because of the presence of ground water, of hydrothermal
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solution or, at greater depth, of partial melting. As Born's
experiment (1941) shows, the presence of a fluid phase in
rock'causes substantially lower Q and a Q of increasing
linear dependence on frequency. Solid ('dry') friction was
described by Walsh (1966) as crack surfaces in contact slide
relative té one another. It is rather insensitive to
temperature but highly pressure dependent. Sclid friction is
independent of velocity and therefore is intrinsically
frequency independent but depends on amplitude. It cannot be
described in terms of viscoelasticity but may ba of the
static hysteresis type. The amplitude-insensitive crack
surface friction is not well explained on the basis of
Amonton's Law (according to which 1‘=,¢.p where T is the
frictional drag, FLthe coefficient of friction, and p the
normal pressure between the rubbing surfaces). Solid friction
may be limited to describe the non-elastic behavior near the
surface of the earth where temperature is nct a main factor.
A conspicuous feature of seismic velocity profiles for
cer;ain parts of the upper mantle is the upper mantle low
velocity zone (LVZ). Is the LVZ in the upper mantle a strong
indication of the presence of fluid phase, probably partial
melting? Or can a composition change or a phase change be
hypothesized to explain the LV2Z? Gordon and Davis (1968)
suggested that the LVZ is principally due to interface
inelastici:y, which can persist to great depth due to the

presence of fluid phase. They claimed that this is a unique
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explanation of the simultaneous occurrence of the LVZ and
the low Q zone (L{Z) due to modulus defect. 1In such a case,
low Q results from interface friction rather than from the
fluid itself. However, according to Born (1941), a small
amount of water injected into the interstitial region in
sandstone increases substantially the internal friction.
Therefore, the presence of the fluid itself should be an
important factor n increasing the internal friction. Many
authors suggested that the low velocity zone may be due to
partial melting >f mantle materials. Partial melting in the
earth's mantle iu likely to have the character of an inter-
gtitial fluid embedded in a host matrix, since shear waves
are transmitted through. A more pronounced minimum of shear
velocity than tha: of P-wave velocity in the low velocity
zone indicates the presence of melting. Various melt models
of damping have been suggested for the earth's mantle by
Mavko and Nur (1375) and O'Connell and Budiansky (1977).
Isolated penny-shaped cracks with melt (short time-scale
damping), interconnected cracks with short range melt flow
(intermediate time-scale damping), and large scale melt
diffusions (large time-scale damping) are considered by

Mavko and Nur (7.975).

3.5 Hysteresis, resonance, scattering and relaxations
The mechanisms likely to be responsible for the

attenuation of seismic waves are classified in four categories.
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Quickly we may rule out hysteresis, resonance and scattering,
for the dissipation mechanism in the earth mantle. Although
scattering does not reflect the anelastic properties of
medium, it is quite important to recognize the scattering
effect when inhomogéneities are comparable in scale to the
wavelength of the seismic waves, Ultimately, it will be
very important to remove the scattering effect to improve

the quality of seismic amplitude data. ﬁowever, we may avoid
this difficulty when we choose rather homogenenus structures
and use longer wavelength (longer period) data for a study of
the damping mechanism at greater depth (the mantle).

Granato and Llicke (1956) proposed that a pinned edge
dislocation may act as a violin string with a damping force
proportional to its velocity. This type of resonance internal
JH friction is strongly dependent on average loop length and
proportional to the dislocation density. The internal
friction will increase with temperature, as thermal unpinning
will increase loop length, even though the disiocation density
X wili decrease with temperature by annealing. However this
‘ type of internal friction due to resonance appears only at
high frequencies and is irrelevant to the seismic problem.

Solid friction across cracks was consider2d by Walsh
(1966) as mentioned in the previous section. This mechanism
adequately explains measurements at low pressure (Birch and

Bancroft, .938) including the frequency indeperdence of

. ———— vty cos e o e - - -
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internal friction and its decrease with pressure. However,
most cracks in dry rocks would be closed under modest
pressure (less than about 10 kbar). In wet (partially
molten) rocks, fluid might persist to keep cracks open under
mantle pressures. However, at high pressure, the internal
friction due to solid friction likely will be minimized, and
viscous stress relaxation may dominate internal friction. As
discussed in section 3.4, this type of mechanism due to
static hysteresis may depend on amplitude and belongs to the
class of non-l.near theories, which are not favored by seismic
amplitudes, though not ruled out.

Most linear attenuation mechanisms are a form of
relaxation process. A relaxation process is a characteristic
of viscoelastic material (standard linear solid), in which
no irreversibhle deformation is undergone. 1In such.a material,

internal friction has the form:

* -1 _ u r wT '
Q = M (3.1)

u 1 + (wt)2

where Mu is an unrelaxed elastic modulus, M_ is a smaller

r
rclaxed modulus, (W is angular frequency, and T is a
rclaxation time. Notice that the peak internal friction
occurs at W = 1. Zener (1948) considered a relaxation in

a two component system where a viscous phase is embedded

in an elastic matrix. The remarkab.e feature of such a two
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component system is the large anelastic effects due to a
small amount of viscous material. Another feature is the
wide variety of types of relaxation spectra. If all the
localized viscous regions had the same size and shape, we
would expect a concentrated relaxation spectrum. Rather,
observed behavior indicates a distribution of the size and
shape of the viscous regions. Walsh (1969) made more specific
assumptions for two phase media. Solomon (1971) applied this
theory to partial melting for the upper mantle of western
United States.

The importance of grain boundary effects in seismic
attenuation was stressed by Peselnick and Zietz (1959),
Jackson (1969) and Jackson and Anderson (1970). Also
important is high temperature background relaxation (Jackson,
1969; Jackson and Anderson, 1970). Most physical mechanisms
proposed for seismic attenuation in the earth's mantie are of
the form of a thermally activated relaxation &nd all these
mechanisms are distributed with a largely unkriown distribution

function.

3.6 Distribution function of relaxation times

The 'standard linear solid' gives a Debye peak (bell-
shaped) absorption spectrum with peak at the frequency
determined by WT = 1, where T is a relaxation time. For most

materials, it is too simple to represent physically meaningful

T e s m——- e e s -
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viscoelastic behavior. As Orowan (1967) explained, in the
case of soda 3Jlass, the elementary process of relaxation

(or viscoelastic creep) is the jump of a sodium ion from one

cell to another. This cannot be described by a dashpot. A
different ion may be activated with a different energy by

a different stiress. Therefore, there may be various activation
energies and strain contributions which can be represented by
different viscoelastic sthemes. To satisfy a frequency
independent Q, the activation energy spectrum, or the
relaxation time spectrum, should be distributed. Various
distribution Zunctions have been proposed to explain

empirical curves by metalluigists and polymer scientists.

To understand the usefulness of these distribution functions,
the most simple and frequently used functions are given in

the following.

3.6a Box distribution

According to Becker (1925) if the distribution function
of activation energies is constant, then viscoelastic creep
is logarithmic and Q—1 is frequency insensitive over a wide
range of frequency (Becker theorem )., Orowan (1967)
interpreted Becker's theorem in terms of the 'standard linear
solid'. Recertly, Liu et al. (1976) demonstrated that a
continuous distribution of relaxations could be superposed

to produce a frequency independent Q over seismic frequencies
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. ’ a relaxation function!ﬁKf) is expressed as a superposition of

st

the elementary relaxation functions e with distribution

density N(s),

-

vit) = I N(s) e~ St ds (3.2)
0

N(s) A/ s for 81< 8 < 8y

0 otherwise

where A is a constant, s is the relaxation freguency (Becker
used the term 'relaxance' for s). Liu et al. (1976) chose

s; and s, in such a way that the frequency range of seismic

interest is completely covered between s; and Sye Becker

was ratner in the position of explaining empirical logarithmic
creep functions in terms of relaxatidns which have been shown
by numerous creep experiments. Becker mentioned s; as 'the
lower limit below which no observable relaxation is contributed
by the volume element within the duration of the experiment'
and s; as 'the upper limit above which an element is

completely relaxed before measurements can begin'. The

above mentioned N(s) is generally known as a box distribution
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function (Gross, 1953). A so-called Becker material, or
the result of a band-limited superposition of elementary
relaxations, shows a creep curve (Orowan, 1967; Kanamori

and Anderson, 1977)

p(t) = ln(szt) - Ei(-slt) + (3.3)
where
x -u
Ei(x) = J € du
u
-

is the 'exponential integral', and the constanth( = 0.5772) is
the limit valve of Ei(-x) - 1In x for x 2> 0. At t = 0+ the
exponential integral dominates. However, after a small time
(when s,t exceeds 3), the creep becomes logarithmic. The
logarithmic creep leads to an approximately constant Q (Lomnitz,
1957). Most 2bservations of logarithmic creep have been for
metals and loung-chain polymers (viscoelastic material) at low
temperature. However, the effect of pressure is opposite that
of temperature so that the discrepancy between laboratory
temperatures and temperatures in the mantle may not be as

serious as we usually consider,.

3.6b Log-no:rmal distribution
The 'box distribution' which is constant and finite over

a limited range of 1lnT and zero elsewhere has been discussed

T s e ——
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in the previous section., A different relaxation spectrum, a
log-normal distribﬁtion,has been studied at length (Norwick

and Berry, 1961) to explain broad regions of nearly constant

Q in metals. A log-normal distribution of relaxation times is
a Caussian diétribution in the logarithm of the relaxation
times, in which the absorption can be specified by three
parameters. These are the mean relaxation time, Tm' the width
of the distribution, (), and the magnitude of relaxation,ll.

For the 'box distribution', the clear advantage is its

possible evaluation of integral (3.2) in terms of known
functions; nevertheless, it has the distinctive disadvantage
that it is a physically arbitrgry distributior, and for the
limits s; and s, to fall just outside the seismic frequency
band is unreasonably convenient. The Gaussian distribution
more likely represents the physical situation in which a
distribution of relaxation times arises due to the distribution
of atomic environments about a mean value. The relaxation
process controlled by atomic movement is strongly temperature
dependent (Jackson and Anderson, 1970):
H/RT

T = T. €

o (3.4)

where H is an activation energy, Tb and R are constants, and

T is temperature. 1In equation (3.4), if the value of H is

distributed with a distribution parameter'c? according to
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Gaussian distribution, then the value of InT is also

distributed with parameter g in a Gaussian manner,

¢ = ¢°/Rr
If we assume that §° is independent of temperature, then C
varies inversely as T. That means, if temperature is low,
the absorption spectrum becomes broader and goes to the
‘box distribution' in the limit. On the other hand, as
temperature goes higher, the absorption peak becomes sharper
and shows frequency dependence. The apparent disadvantage
of the log-normal distribution is that the'integral (3.2)

cannot be evaluated in terms of explicit functions.

3.7 Q frequency dependent or independent?

The frequency dependence in Q in the earth's mantle from
most seismic cvidence is ambiguous at best. Solomon (1971)
reviewed eleborately the contradicting evidence. One of the
maiﬂ sources »f ambiguity is the large uncertainties in
seismic measurements. The main obstacles in seismic amplitude
mcasurements are geometrical effects, such as scattering,
multipathing and mode conversion. Jackson (1971) assumed a
frequency dependent model based on the mechanism of grain
boundary relaxation and showed a reasconable fit to the
intermediate range of Love wave and toroidal oscillation
data (40-2n0 sec). However, Jackson's model (57-31-010)

seems not tc have good agreement with longer period data

R 3
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( 22008). Jackson (1971) indicated that the zssumption of
frequency independent Q resulted in negative values of the
Q model in some depth. Solomon (1971, 1972a) sujgested a
relaxation model due to partial melting in the upper mantle
of western United States. Solomon's (1971, 1972a) frequency
dependent model showed a good agreement with Love and Rayleigh
wave attenuation data in the period range 15 to 82 seconds.
However, the same data set is still in good agreement with
frequency independent models (Solomon, 1971; Lee and Solomon,
1975). Archambeau et al. (1969) doncluded that q} (P-wave
attenuation) in the upper mantle of western United States
increases with increasing frequency over the period range
0.75 to 1.5 Hz based on their observations of the attenuation
of Pn waves. However, a frequency independent Q has been
usually assumed. Recent observations of body wave -attenuation
(Solomon, 1572b; Der and McElfresh, 1977) suggest that Q
increases with increasing frequency above 1 Hz. Russian
investigators, Fedotov and Boldyrev (1969), Khalturin and
Rautian (personal communication with Aki) expressed t@e.same
opinion.
From an observational standpoint, ig is fair to say that no
conclusion can be made one way or the other for periods longer
than 1 sec and there seems to be growing evidence of Q
increasing with frequency for shorter periods (<1l sec). From

the theoretical point of view, individual relaxation

mechanisms may be thermally activated processes and are

e i et e et aemiAnte =t
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strongly frequency dependent. However, a certain distri-
bution function uof these relaxation mechanisms could show
a frequgncy independent spectrum of Q over a limited
frequency band (Orowan, 1967; Liu et al., 1976). 1If
extensive melting is possible in the earth's mantle, Q will
become more frequency dependent because of the charactersitic
of liquid state for Q to increase with w (Knopoff, 1964).
Such an explanation may have something to do with the
frequency dependent observations (or related interpretations)
in western U.S. (Archambeau et al., 1969; Solomon, 1972a)
and the Atlantic Ocean (Tsai and Aki, 1969).

For partial melting, Walsh (1968, 1969) conSidered the
earth's mantle as a two-phase medium. If we think of a
two phase medium in terms of a matrix embedded with viscous
inclusions, relaxation due to either viscosity of tle
inclusions or viscous fluid flow through connected cavities
may be responsible for damping. For distributed cavity sizes
and shapes such inclusions will lead to a distributed
absorption spectrum. We could not say anything more until
either we measure accurately attenuation of long period body
waves or we improve our knowledge on the attenuation mechanism
in the earth's mantle. Therefore, the box distribution of
relaxation mechanisms, which may possibly occur in the earth’s
mantle and which leads to a logarithmic creep function, often

observed in th2 laboratory, may be a reasonable first guess.
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On the other hand, the gap between the laboratory and
the earth's mantle may be less serious than we usually
assume, since temperature and pressure effects may work
against each other. Finally, with the recent iore widespread
appreciation of the importance of anelastic dispersion, the
more accurate phase information as well as inaccurate
amplitude information can be a strong constraint to discriminate

among some of the assumptions about frequency dependence of Q.

S e v g, - oo— ——— .
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CHAPTER 1V

Anelastic Dispersica

4.1 Resume

In the previous chapter, we discussed attenuation
mechanisms and distribution functions to explain the gap
between individual mechanisms and observations. In this
chapter, we are going to take an alternative approach, in
which we postulate basic principles like superposition
and causality, and write the conseéquent mathematical
relations between physical parameters. Ulﬁimately we want
to use these rclations for inversion problems in the
following chapter. Kolsky (1956), Futterman (1962), Lamb
(1962), Strick 71967) and Azimi et al. (1968) used this
approach in one way or another. The principles of super~
position and causality provide relationships between the
real component and imaginary component of the complex
elastic modulus (phase velocity v and attenuation coefficientX)

: given the observed frequency dependence of Q. Some other

dispersion-attenuation relations also can be provided from a
finite or infinite superposition of relaxation mechanisms
using a certair distribution function. Solomon (1972a) and
Liu et al. (1976) showed examples of these. Others arise
from the empirical equations like Lomnitz's Law (1957) and
the Jeffreys-Lomnitz law (1958). All of these relations,

however, are indistinguishable mathematically for a given

tevap
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frequency dependence of Q. Therefore, they aré classified
in two general categories, frequency independent Q and

frequency dependent Q.

4.2 Superposition and causality

We have discussed the validity of the linear theory of
seismic wave propagation in anelastic media in the previous
chapter. Linear theory provides Fourier analysis and the
superposition principle. Therefore, the attenuation problem
of non-sinusoidal waveforms is mathematically manageable. A
wave form may be decomposed into its Fourier components, each
component as a sinusoidal wavelet being attenuated and
recomposed into the damped form of the complex wave. The
causality principle, 'no signal before stimulus', is a must-
be-obeyed condition in any physical system. Hovever, causality
often seems to be violated when we approximate a “heory or an
equation for numerical calculation, or when we try to fit a
small piece of spectral data. The violation of causality
sometimec causes disastrous conseguences. In seismology, we
have an example of causality violation. We used to make three
simultaneous but incompatible assumptions based on limited
pieces of observations. We used to assume: 1) fraquency
independent Q, which is approximately indicated by observation,
2) non-dispersiveness) which is indicated by bocy wave
observations (surface wave observation is complicated by its

own dispersion due to penetration depth), and 3) linearity.

i
{
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Therefore, among the three, one or more is necessarily wrong.
The causality violation due to these three assumptions can be
easily demonstrated in the following example of a delta

function pulse ¢ {t-x/c). The Fourier transform of the pulse

8 (t-x/c) is

1
21T

[+ o]
F(w) = J st -T) e *WE qp = o TWTHp 4y
a

Allowing the pulse to travel for a time T in the medium of

constant Q, we obtain the attenuated spectrum

« RS <" iwr -XI
FolWw) = -LJ §(t-T) e *WEe 20 ¢ - o e X ,ar4.2)
2/ o

Transforming back to the time domain,

.3

£ (t) = I Fp( W yeiWt 505 = 2 [ T/2Q ] (4.3)
-0 L (T/2Q) %+ (7-t) 2

The result of equation (4.3) shows that the pulse peaks at
t=T and spreacrs symmetrically to both earlier and later times.
The fundamental unacceptable feature is that the disturbance

begins before ¢=T.
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A moderate frequency dependence of Q may be introduced
with an associated dispersion to cancel the Fourier component
which gravels faster than its signal velocity. Assuming
certain types of frequency dependence of Q, the corresponding
dispersion relations are given by Kramers-Krdnig rzlations
(Hilbert transforms). A detailed discussion on causality and
Kramers-Krbnig relations is given in Appendix I.

4.3 Anelastic dispersion

. \In a linear theory of :..tenuation, dissipation must
AN j
accoryany dispersion. Suct dispersion due to anelasticity is
\\‘\jwn)\s ‘anelastic disper i.on'. This notion is the by-

pProd, of principles of ¢ 1rerposition and causality.
\
|
F“ttel)\\\(l962) derived a/.ispersion relation from the
. i ‘
Kramers-x,hk;q causalit . leations. An important consequence

of anelastic.ELS ersion .|that it is of first order in Q--1
and the diSPerS;\k vetwe | two decades of frequency in the
earth's mantle is ‘\\ft . which is nearly an order of-
magnitud. larger than Kzainties in the data. We will

discuss the significance (E this statement. Although the
effect of anelastic dispye { on has been discussed by a number
of authors for nearly twi‘ ;:aées, the significance of this
effect has been either h‘!Lacteh or widely thought to be )

minimal in the seismologiazl ccumunity until quite recently.

|
For the point of historic.! interest, we will discuss the

\

reason for the neglect of \:elastic dispersion.
\

e o m————— e e we e = =
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4.3a Importance of anelastic dispersion in seismic studies

Ever since long period surface wave velocities and free
oscillation periods were first interpreted to derive earth
structure, the result has not been compatible with the classical
models of Jeffreys and Gutenberg derived from body waves. The
so-called 'baseline discrepancy' is the travel time difference
of P and S waves from such a velocity model for long period
data with refetence to Jeffreys-Bullen travel times, for example.
This baseline ciscrepancy is known to be more pronounced for S
wave than P waves., According to Sen-Gupta (1975), his observed
travel times of body waves from deep focus earthquakes, compared
with the travel times computed from the Bl model of Jordan and
Anderson (1974), an inversion model based on 80 percent free
oscillation data and 20 percent body wave data, are 0.3 seconds
early for P, 6.4 seconds early for S, and 5.7 seconds early for
ScS. Sipkin and Jordan (1975) suggested there may be a
continental bias in observed travel time of S waves while free
oscillation data represent the average earth mantle. However,
by any explanation, the $ wave travel time difference of 6.4
seconds is too big. Carpenter and Davies (1966) and Davies
(1967) pointed out the importance of dispersion in surface wave
inversion and discussed the compatibility of body wave and
surface wave observations. Hart et al. (1976), Anderson et al.
(1977), and Kanamori and Aaderson (1977) discussed the anelastic
effect in the inversion of surface waves and free oscillation
data. The significance of the anelastic dispersion effect is

that the baseline discrepancy can be removed. Non-dispersive

-4
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earth models from surface-wave and free oscillation predict

the phase velocities around 50 second period with about 1

percent error (Carpenter and Davies, 1966; Liu et al., 1976).

4.3b Reasons for neglect of anelastic dispersion

As explained in the previous section (4.2) and also by
Stacey et al. (1975), it has been a mistake to use three
incompatible assumptions which lead to causality violation,
namely, linearity, constant Q, and non-dispersiveness of the
medium. Knopoff (1956, 1959) discussed a linearized equation of

motion of the form,

o2 (1+ 1 3>au=3u
(o] IwlQ 3t ax2 aAtz
where u is the particle displacerient and o is the wave velocity
~ in the absence of attenuation (Q->w). Here we can see the same
mistake of constant elastic modulus being assumed (non-
dispersiveness). Because of a similar error, Ricker (1953)
and Knopoff (1956) reported that the waveforms propagating
thro?gh media with solid friction are not changed but spread
. out symmetrically.
> Other reasons for the historical neglect of anelastic
' dispersion are given by Kanamori and Anderson (1977). (1) For
a simple damped linear oscillator the inclusion of an infini-
tesimal attenuation € changes the natural frequency of the
system fror. W to W(1-C€ %), where C is a constant. Since
€ Q-l, the effect can be ignored for Q greater than 100, a

typical value in the earth's mantle. 2) Knopoff and MacDonald
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(1958) showed that the inclusion of infinitesimal attenuation in
a linear system results in Q which is proportional to odd
powers of frequency; therefore a constant Q model is
inconsistent witn a linear system. This led Knopoff and
MacDonald to introduce a non-linear model. 3) Futterman's
(1962) dispersion theory has been challenged by some investi-
gators (Stacey et al., 1975) because the propagation velocity

is increased by inclusion of anelasticicy. (Futterman’s theory
has been defended by Savage (1976) and Kanamori and Anderson
(1977) in that Futterman's mistake is not a real physical
implausibility but rather is a result of the arbitrary
assumption that phase velocity at zero frequency is the

elastic velociiy). These arguments can be given for

historical interest. Some confusions due to arguments between
linear or non-linear theory, and between frequency dependent or
independent Q ,siiould not prevent us from seeing the significance

of anelastic dispersion.

4.4 Dispersion-attenuation relations
Dispersion-attenuation relations can be given in two
different ways. (1) In the frequency domain, for a given
frequency dependence of Q, Kramers-Kr8nig relations provide
a dispersion-attenuation relation. A frequency dependence
(either dependent or independent) of Q can be given by
superposition of a certain individual relaxation mechanism

or of viscoelastic elements, or by empirical observations.
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(2) In the time domain, Boltzmann's after-effect equation will
provide a complex modulus and a dispersion relation for a
given creep function or relaxation function. A creep (or
relaxation) function can be given in a similar way, by
superposing the relaxation (or creep) function of each
viscoelastic element using a distribution function or by
empirical observations. No matter which procedurz we go
through, the same dispersion-attenuation relations are given
for the same frequency dependence of Q. Therefore, we will

discuss two categories of freéuency dependent and independent Q.

4.4a Frequency independent Q

Various attempts have been made to explain the nearly
constant Q in fhe seismic frequency band (Futterman, 1962;
Lomnitz, 1957; Azimi et al., 1968; Liu et al., 1976).
Futterman (1962) and Azimi et al. (1968) derivecd dispersion

relations in the frequency domain.

'X(w) = Cu (Futterman)

(4.4)

T X = Ko

= (Azimi et al.)
1l +-X;w

where X(w) is attenuation coefficient and C,)% ’Xl
are constants. Relations (4.4) give the following dispersion

relations (Appendix II)




nQ

-1
viw) = v [l - 1“’] (Futterman)
o

’ w -1
viw) = v_ |1+ =27 s——y In —2 (Azimi et al.)
n(l- x; w ) X 1@

(4.5)

where X, is chosen so that X(w)is almost linear in some finite

frequency range (O < W SWiim (Azimi et al. used the value of

constant X; as ~ 1077 sec).

For attenuation

-1 -1

Q " (w) = QO (Futterman)

-1
-1 ~ Qo ..
Q " {w) = (Azimi et al.)
1+ X1w

Since Xl is very small (10-7), the two above expressions are

vertually identical.

Lomnitz (1957) and Liu et al. (1976) instead derived
dispersion rela*ions in the time domain. The creep function was

given as follows

q 1n (1 + at) (Lomni tz)
é(t)
(406) .

[}

~e-t/T)

c (1 - (Liu et al.)

T




’--n-g--------!-""""""""”“"’”““”"L

f 204.
| .

where q, a, C, are constants and T is a relaxation time
constant. These creep functions will give the following

dispersion relations (Appendix III)

Vé{l f 1}Q; [y+ 1n —g—]klomnitz)
viw) = (4.7)

a 1, S2 ,
v - '"Qo n " }  (Liu et al.)
wherejy, a, s, , are constants, v, is the velocity at infinite
frequency, and Q is approximately constant at the value Q.

From (4.5) and (4.7), when @, » is small,

w
v( w)/v( w) = 14 ——1n (wl) (4.8)
o 2

This is a good approximation for various attenuation laws of

constant Q.

4.4b Frequency dependent Q

Qeffreys (1958) modified Lomnitz's law (1957) to the
Jeffreys~-Lomnitz law which also represents an empirical law
(Andrade, 1911). The creep function for the Jeffreys-Lomnitz

law is

o(t)

v

.- [ (1 +at)Y -1 ] (4.9)

T e e g e s oo
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where q and a are constants and  is a number between 0 and 1.

As p goes to zern, (4.9) tends toward the original Lomnitz law.

In the time damain, this creep function (4.9) gives the following
dispersion relations (Appendix 1III)
-1 v -V .
Q (w)=qga (v-1)1 w sin —-—

(4.10)

-1 - -1
viw) = vw~[:1 + 97- cot 1%—]

(Jeffreys et al., 1960; Jeffreys, 1965, 1975). For v, a number
of suggestions “1ave been made by Jeffreys ( % ' % ) and Andrade
( 3). Lamb (19€2), Strick (1967) and Azimi et al. (1968)
considered the following frequency dependencé of the attenuation

coefficient yx(w) r

Xw = X o™ (4.11)
o]

where V is a number between 0 to 1.,
The frequancy domain approach (Appendix II)will give the

following dispersion relations,

(4.12)
viw) = v, [1+ Xov v ™Y tan-’%’—]-l
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Lamb (1962) used V = % and Strick (1967) and Azimi et al.

" (1968) rather try to explain nearly constant Q with

V= 0.078 (Strick) and V= 0.1 (Azimi et al.).

Equations (4.10) and (4.12) give

- - -V
Tl wpeti wy = (W wy
-1 : (4.13)
v w,) Q wi\-v -1
_—1 . 1+ g cot TZV 1 - —1
vi W,) o
-1 . -1 -
where Q, ° 18 Q at w:=w,.

Solomon (1972a)considered a freguency dependent Q model
for western United States with the assumption of partial

melting. Solomon (1972a)used a couple of relaxstion times

- for the asthenosphere. For such a superposition of a finite

number of relaxations, dispersion relations car. be written as

(Solomon, 1972a)

- JAYTR wT;
Ql(w) = 2 Zl 172 1_2
Dy ]1/2

2
1+ ( Q)Ti)

(4.14)

viw) = v [% - 3
i

where‘ﬁxfztand TI are the s£ixength and the charecteristic time

of the i-th relaxation.
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CHAPTER V
Formulation of Simultaneous Inversion of

Surftace Wave Phase Velocity and Attenuation

5.1 Resume

In this chapter, we describe a formalism for simultaneous
inversion of sirface wave phase velocity and attenuation.
The forward problem of surface waves in an anelastic medium
and the subsequent inverse procedure are developed. Basically,
a complex formilation is developed first and treated
component-wise for computational purposes. Resolution
analysis is extended to the complex case using Der and
Landisman's (1972) two-variable concept. A comparison
between the simultaneous formulation and Anderson and Hart's

(1976) treatnent is included.

5.2 Forward problem

The problem of surface wave propagation through perfectly
elastic multilayered media can be treated by Haskell's matrix
formulation. In each layer, with boundary conditions of the
free surface and of continuity of stress and displacement at

the interfaces, a set of egquations hold:

A+ 2 . v . = .
( j uJ) ¢ o

(5.1)
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2 32v.
., V9 v, = (<3 — {S5.1b)
Y3 e Vs i 32
where Vi = 32 + C 3
Ix 3z
3¢ . Iy . ad. Ay,
u. = 5 + Vi w, = i _ '3
j 9 x d 2z ’ 3 92 9 x

where x (propagation direction) and z are the horizontal and
vertical 'axes, respectively, >\j"/~Lj and Pj are Lame parameters

and density in the j-th layer, V., ¢j are scalar and vector

b
potentials of the elastic field of the jth layer, and Uje vy
w5 are the displacements in the x-, y-, and z-directions. For

an anelastic (or viscoelastic) medium, the wave equation (5.1)
and the solution have the same form in the frequency domain as
for an elastic medium except that the elastic modulus is

replaced with a complex quantity according to the 'correspondence

4 ‘ principle' (Christensen, 1971). The Fourier transform of

equation (5.1) with complex modulus is

N

*® — -—
E(w) vi F, = oy w2 Fy(xiz,0 ) (5.2)
m 13
F.(x,z2, w) = 1 F.(x,z,t) e * wt dat
J 2T J
-

where E*j(w) represents either )\j+ 2ML jor ‘U_j and F
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*
represents cpj ,l‘fjor vj. Ej(w) depends on frequency in general.
The frequency dependence can be specifically defined by the

creep function (or relaxation function) of the medium. As an

]
(5.2) with the boundary conditions mentioned above is

example, the sclution of Fj = v. (for Love waves) of equation

Vj(x,z,w) = 'E—‘j(x,z,w) =2 TA e'-bz e 1kx 8 ( w- wo)

where A is a constant, Sis a Dirac delta function, and where

k = Ww/c
b = k¢ 1 - C2/B 2
82 = Mo

and the phase velocity c is found from the solution to

equation (5.1). The inverse transform of Vj is

A e-bz e 1ko(x-ct)

vj (x,z.t)

1 = W C
where Xq o/
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c = ( ¢, + ic2 )

By = (B, +iBy)u,

Therefore, Haskell's (1953) matrix formulation may be
extended to lossy media by implementing complex velocities
and a dispersion relation between the real and imaginary
parts of the intrinsic velocity. Similarly, for kayleigh
waves, the above extensicn of Haskell's matrix formulation

can be achieved.

5.3 Inverse problem

The phase velocity and attenuation of surface waves on
a multilayered, anelastic earth are obtained from the roots of
the complex dispersion-attenuation functions (Schwab and

Knopoff, 1971) f,; (Love) and fp (Rayleigh):

AN

L
fL( Ti’ cil ﬁjl Fjl dJ ) = . 0
: (5.3)
) : R =
fR( Ti' Ci, j' aj, Pj’ dj ) - 0

i=1,2, ... ,m; j3=1,2, ... .n
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gﬁ and ciR are ith period and Love and Rayleigh

where T,, C
wave phase velocities and(lj,/?j and dj are, respectively,
the P- and S-wave velocities, density and thickness for the
jth layer. The velocities ct,cR,d ana f are complex quantities.
The inverse problem can be stated as the problem of
finding an anelastic (complex) earth model from given
observational da*ta pairs, phase velocities and phase
attenuations. We start with an initial anelastic earth model
and a set of observed dispersion—atteguation data pairs. ‘The
phase velocity and attenuation for the initial complex model
are then calculated theoretically by Haskell's (1953) method
at the period of each observed data pair. The generalized
Haskell formulation is for a flat earth, whereas the
observations are for a spherical earth. The flat-to-spherical
transformation of Biswas and Knopoff (1970), as amended by
Schwab and Knopoff (1971) to include anelasticity, is used for
sphericity corrections for Love waves. For Rayleigh waves, a
similar transform is given in Schwab and Knopoff (1971).
However, it is d@ifficult to use in a computer code. In this
study, Bolt and Dorman's (1961) empirical correction has been
used for speri-.ity and gravity corrections. Although North
and Dziewonski (1976) improved such a correction, a minimal

change is expected at periods less than 100 sec.
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From the dispersion-attenuation calculations we can also

ocbtain the partial derivatives of complex phase velocity ¢

with respect to each camplex parameter p of the layered earth

model.

Then the linear perturbation equation can be written

relating the desired parameter corrections to tile differences

between the corresponding theoretical and observed phase

velocity values:

where the repeated indices imply summation for n layers.
similar equation for each period can be formed.

Because the physical significance of a complex quantity
is more easily understood by decomposition into real and

imaginary parts, we write eguation (5.4) as two real equations,

rather than one complex equation.

Zlcg'R

L,R
k Ac2

/

( L,R
acl

L
Bcl
)

L,R
2

aP2

aC

/

(5.4)

A

(5.5)

where c&'%nd cg'gre the real and imaginary parts of cP'R and Py

and p, are the real and imaginary parts of p.

It is assumed that all the dissipation is cue to

imperfect elasticity.

By requiring the density to be real

we ignore the possibility of losses due to imperfect inertia

——
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T

i (Anderson and Archambeau, 1964). For Love waves we can write

equation (5.5) in morée familiar terms:

1 \
([ ack 5 ¥
ACI‘ 1 l AB
1 78, 78, 1
_ (5.6)
= ack 3k
i AcL 2 2 AB
1 2 98] 38, 2
f i | Jij j

where '31 and ﬁz are the real and imaginary parts of the shear
wave velocity in the jth layer. For Rayleigh waves, eq.(S.S)

can be written as,

r , (R R R R R (88 )
AcR acl acl ] Cl P ¢y ac:l 1 AB1
1 - 381 382 301 3(:2 ap 2
A (5.7)
1
R R R R R A
AcR 3c2 ac2 d c, acz E)c2 2
2 38 ) da Ja Ip
| i . € 1 2 e ),
J J 1] J

Since one or both ofAﬂl andAﬂz depend upon frequency (as do
ACLl ::deSCL2 for Rayleigh waves), the right hand sides of eq.
(5.6) and (5.7) should be standardized at a single reference

frequency for inversion (see below). Generalizing equation

(5.4) to m complex observations and using matrix notation gives:

LR LR _ XL,R (5.8)

A
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where y is an m x 1 matrix of differences between observed and

predicted phase velocities and attenuations, A is an mx n

matrix of partial derivatives, and x is an n x 1 matrix of

perturbations to the starting anelastic earth model. The

elements of 2& é?and ffare real 2 x 1, 2 x 2 and 2 x 1 matrices,

respectively and the elements of ;{, g‘ and %‘ are real 2 x 1,

-—
-—

2 x5 and 5 x 1 matrices, respectively.
The partial derivatives of phase velocity with respect to
shear velocity are obtained by implicit functioa theory

{(Schwab and Knopoff, 1972):

3R d fL,R afy,r
38 38 acleR
(5.9)
3cR - _ 9 fR / 3 fR
Ja Ja dc
where £, = (s, =i)a  _ja, 5 ... a; (;)
£ = plOIF1)IL(2) [ =250 q(n) oven n
R ® ® e
Fin=2)pn=Dgn) 44

\

are the dispersion-attenuation functions for Love and Rayleigh
waves and where

. ¢ -l . .
. = cos Qj ' x}Lj rBj sin Qj . J=1,2, ..,n~-1

1}Ljr8jsxn Qj cos Qj




T(o)

(n)

p(3)

F(3)

/1 - ¢

2

{3)
F1213

F1313
Fra13
F2313
Faa13

Fi413

/8

’

;I-.(n)

(3)
Fi1214

F1314
Fla14
Fa314
Faa14

Fii4

2 2 2
= ( -Cl( Cl"l)a 0, (Cl-l) ’ cl' Q/C pll
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cl( cl-l)]
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r rg, = / (cL'R/sj)" -1  if Re 'R, Re B
-i/ 1 - (cL'R/Bj)Z if Re c'R < Re B
r = Y cR/a. )2 -1 if Re cR > Re a.
Gj J J
. R 2 .
-ivY¥1 - (c /aj ) if Re ¢ < Re aj
_ L,R
Q) w r8j d)/ c
_ R
PJ = w raj dj/ c
q = 0 for continental paths
ip c2 tan [P_/r ] for oceanic paths
o o Ta,
_ _yy -1 2 2 2 2
€ = (=-1) p, ¢/ Cn raann Pn %n
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and where the square root operation is performed so as to
make Re rﬁ3>o, Re raj>o for all j. The partial derivatives

. required to evaluate.equation (5.9) are given fo:r Love waves, by

of

3c

BfL

———

a8

of

L
asn

For Rayleigh waves,

define

then °
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98
[—a—é-, 0). an_lan_z e al (0)
sa. 1 i
+ [S' -l] J? an"'lan"‘z PR a'c" ... al (0 ) x
da.
- — 1
[s, ~i]} a 18 5 .- 38j co 2y (0) n

9s 1l
{ 33;, 0] an~lan_2 .o al ( )

K(n-l) - f(l)F(Z)F(3) (n-2)§(n-l)

ees F
A=) | F(p@5(3)  pn-2)p(n-1)
fR = T(O) K(n-l)T(n) for even n
T(o) A(n-l)T(n) for odd n




For even n,

oK _
- Yoa

where

3 Z(nq)
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—
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R

R,

where p can b2 either L or ﬂ .

For odd n, similar formulae hold.
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_ o ~(m) n o n
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_?f_(j)_ =(n-0 1(n)
& T
G)
3F-\ . = (n-1 (n)
3% FOOT
—(ﬂ-l) —)ji")
F ' 9Pn
E (n-0) ar
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From equation (5.11), only

two of the elements of the 2 x 2 real matrix in equation (5.6)

arc independent for Love waves and only six of the elements of

the 2 x 5 real matrix in equation (5.7) are independent for

Rayleigh waves.

Thus the matrices can be completely specified

from the real and imaginary parts of ac"lk/aﬂ and 36"/ 24 .




Since c¢

L. cL(ﬂ) and cR= cR(a., ﬂ) are analytic, single-

. R
l'IR - C.LIR + v C;’
{(Morse and Feshbach,
R
ac';’K _ ack
B, — 3,
R R
p-J o _ ac
2a, ~— 24,

Resolution

To assess a criterion for

1953, p.

valued functions their first derivative are unique and
independent of the direction along which the derivative is

taken), the Cauchy-Riemann condition is satisfied for

B =g tif,d=a +la,

357), and
LR
acy aq%k
B, ¥
5.1
R R ( )
2€, _ aCc,
aa, o,

stability of the inversion

process, we should examine the averaging kernel or resolving

length at various depths.

In Lee and Solomon (1975), we
. determined the resolving length for surface wave attenuation

data with errors using the idea of Der et al. (1970) of

e minimizing simultaneously both the variance of a physical

parameter of interest in a layer and the deviation from a

8-function of the averaging kernel for th. ct»me layer. Der

et al. and others have shown that the resoluticun of layer

parameters can be improved by combining two independent

observations, such as Love and Rayleigh wave dispersion or

—
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fundamental mode and first higher mode Love waves, Der and
Landisman (1972) extended their theory to the case of two
variables, namely shear velocity and density in the crust and
mantle. In the éxtended theory, separation of the two

unknown variables, depth resolution, and accuracy of the
parameter estimates are three competing objectives. A similar
theoretical discussion was giveh by Backus (1970) in an abstract
form. Dziewonski (1970) noted that the strong correlation
between the partial derivatives of free oscillation periods

with respect to density and shear velocity makes the inversion
process highly non-unique. Derr (1969) showed that the addition
of free oscillation overtones of low radial order to the set

of fundamental mode observations does not greatly improve the

depth resolution of shear velocity but facilitates the
scparation of shear velocity from density. Similar conclusions
were also given by Der and Landisman (1972).
The simultaneous inversion of phase velocity and
attenuation, however, differs in two important respects from
3 the above cases:
{ 1) The reclative errors associated with phase velocity
and attenuation data are generally very different, much larger
for Q-.1 observations ﬁhan for phase velocity measurements.

2) The two variables ﬁ’ and ?5-1 are expected to be well

separated by the Der and Landisman (1972) treatment because
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the real and imaginary parts of the data are more closely
related to the two unknown variables (real and imaginary
parts, respectively, of an earth model) than is the case for
the two-variable pfoblems mentioned above.

We follow the treatment of Der and Landisman (1972) for

parameter resolution for a two-parameter earth mocel. The linear

combination of data yf'RUSed as the estimator of a desired

parameter x%'nin layer Xk is

X = I r (5.12)

X L LYy

LR _ N M L,R L,R
i 3

LTSy
i
where rik is a coefficient to be determined, N is the number

of data, M is the number of layers in the model. and where Sij =
1]
i
axP’R
.JThe three quantities to be minimized are (Der and Landisman,

, normalized by the layer thickness in km.

1972)

1) the variance of the desired variable x) '

2) £y, the resolution for ka'R
L,R
3) S5, the dependence on the undesired variable ;k ’ for

the same layer.

If we assume that the observational errors are independent

L,R N 2 L,R 1
var xk' = E Iy var yi' (5.13) E
L,R 2 L,R .2
8 = I d. ) S
L,R 2 M L,R .2
(8" ) g d) ( ij )
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where dj is the layer thickness and

N
elR - ¢ . /R
kj i ik "ij
L,R (5.15)
L'R N L'R L'R - ayi'
ij z Tik Ti' ' Ti. = —
i J J 9%

These three objectives can be accomplished by minimizing the

function
CifR = sint var xilR + C°555i“N(5§'R)2 + cosEcosn(sg'R)2

+2 6(R -1) (5.16)

kk
where 6 is a Lagrange multiplier. The parameters f and 77

U)<§}77<%§are adjusted so as to balance the three desired
ninimizations. As f is increased, the approximation to the

delta functicn becomes worse, the variances of ka'R become
L,R

L,

smaller and separation between x, . improves.

and Xy

5.5 1Inversior. Procedure

For the d_spersion-attenuation relations discussed in

. -1 -1
section 4.4, Q , 0_CL , ﬂ and @ are related to ﬂl'

v

ﬂZ, a; and @, such that

-1

Qg 2 82/ Bl

(5.17a)
-1
a 2 uz/ o,

&
]

—d




224.

2, g2
B = (8] + B3 / B

2 (5.17b)

2
a = (al+a2)/al

For each of these relations, '5’1,0.1 or all ﬂl’ﬂz’dl and d,

depend on frequency

Byjluy) = Byy * g(w;) By
sz(“’i) = B.Zj h(w;)
(5.13)
ul;j(wi) = Elj + g(wi)azj
sz(wi) = aZj h(wi)
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where g and h are specified functions of frequency and
ﬂlj' ﬂZj' a’lj and 25 are values of ﬂlj'ﬂZj'dljand a'2j

at a reference frequency respectively. 1In general, the
inverse problem to equation (5.8) is conducted at the
reference frequency, the partials in (5.4) are with respect to
‘El . ﬂz, ‘11 and Q@ s and the earth structure at any other

frequency folloss from (5.18) (see Appendix 1v).




gt
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CHAPTER VI

Applications

We now apply the formalism for the forward and inverse
dispersion-attenuation problem that we discussed in the
previous chapters to (1) Love waves in western North America,
{(2) Love and Rayleigh waves in western North America, (3)
Love and Rayleigh waves in east-central North America, (4)
Rayleigh waves in the central Pacific. We tried to test
various dispersion-attenuation relations in each region.

In western North America (1), the dispersion-attenuation
relations for Q independent of frequency (/=0), Q varying as
powers of 1/2, 1/3 and 1/5 of frequency (V= 1/2, 1/3, 1/5,
where V is the power of Q'l of frequency dependence) and Q
for a superposition of shear relaxations were zssumed in
various inversion trials. In western North America (2), the
dispersion-attenuation relations for v= 0, 1/2 and 1/5

were tested. In east-central North America (3), V=0, 1/2
were tested. 1In the central Pacific (4), V = 0 was applied

-
in the inversion process.

6.1 Data
a. North America

The data sets for Q;}R of North America are described
and tabulated in Lee and Solomon (1975) and in Chapter II;
the accorpanying phase velocity measurements are given in

Solomon (1971).

-
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Since this data set, derived from records of events
in the years 1)964-1968, includes no Rayleigh wave data in
western North America at periods longer than 40 seconds,

we made an effort to search for events in the years 1969-

1975 for which energy at periods longer than 40 seconds
was visible on the vertical component. A requirement of
the search is that events must be nearly on the great
circle connecting the two stations LON and TUC. ‘'Nearly'
great circle path is taken to include a flexibility of 10°
in azimuth from precise great circles.

We picked and digitized five events (Table 6.1) whose
magnitudes ranged between 5.8 and 6.5 and which are located
in China, Alaska and Indochina at distances between 40 and
130 degrees from the stations. After we went through the
standard procedure, described in Solomon (1971), we realized
that we could not obtain any new information, because of
several reasons: (1) Suitably long period (Rayleigh waves)
are poorly gz2nerated unless an earthquake has a magnitude of
near 6 or greater. (2) The path from an event to the stations
should not cross geologically complex regions. (3) If the
event is too large in magnitude or too close to one or both
stations, the records are usually complicated or unreadable.
(4) In our case, the great circles connecting each of the five
events to the stations LON and TUC pass through a part of
the Asian continent and Alaska, where the geology is not

simple. Further, three of the five events are too far

I T -
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away from the stations (more than 100° away). As a
consequence, we were not able to add to our knowledge of
long period Rayleigh wave propagation in western North
America.

b. Central Pacific Ocean

The data set for Q;I for the central Pacific ocean
has been measured by Mitchell et al. (1976). They
determined Qﬁl from the records of three earthquakes at
WWSSN stations distributed around the west coast of
America, the Far East and the Pacific. These measurements
represent a weighted average of the entire Pacific ocean
region. Such an average model does not strictly represent
the structure in any particular location because of the
lateral variation of oceanic structure according to the age
of the sea floor (Forsyth, 1975).

We particularly have chosen one event among the three
for which the data sample paths predominantly across the
relatively old (80-90 m.y. old average) central Pacific.
The locatiou of this event (April 26, 1973, 20M26™30.8%,
latitude 19.9°N, longitude 155.13°W, my = 6.0), stations
and paths are shown in Figure 6.1. The corresponding phase
velocities, also a weighted average of 'pure path' velocities,
are calculated using the magnetic anomaly map (Pitman et al.
1974) of the Pacific and the results of Forsyth (1975, 1977)
on the varlation of phase velocity with increasing age of

the sea floor. We divided the Pacific into eleven age
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Fig. 6.1. Pacific area map showing paths between the
April 26, 1973 earthquake and stations (ALQ, ANP, ARE,
BAG, BOG, CHG, COL, COR, DAV, HKC, JCT, LPB, NIL, RAR,
RIV, SNG, TAU, TUC, WEL) used in the Q 1 measurements

of Mitchell et al. (1976).







age regions (0-5 m.y., 5-10 m.y., 10-20 m.y., <0-38 m.y.,

38-53 m.y., 53-65 m.y., 65-83 m.y,, 83-100 m.y., 100-135
m.y., 135-190 m.y., greater than 190 m.y.) and continental
paths. Each grea£ circle path from event to station is
plotted on the map of age zone boundaries, from which we
can calculate the total path length in each age group for
the sum of all the paths (see Table 6.2). Then we can
determine the weighted average of phase velocity and group
velocity at each period using the results of Forsyth
(1975, 1977) and the weights shown in the Table 6.2. The
resultant weighted phase velocity and group velocity
curves for the eastern Pacific are shown in Figures 6.2
and 6.3.

The magnetic anomaly map on the basis of which
seafloor ages were estimated does not include the marginal

basins of the western Pacific, across which pass many of

the surface wave paths used here. Additional age information

for these basins have been taken from Weissel (1977) for
the Lau Basin, from Weissel et al. (1977) for the Coral Sea
and New Hebrides Basin, from Watts and Weissel ({1977) for
the south Fiji Basin and from Sclater et al. (1976) for the

Philippine Sea. Details of the adopted basin ages are

listed in Table 6.3.




Table 6.2 Great circle paths in each age group
for the 26 April 1973 Pacific event

Path Distance (°) Percentage
0-5 m.y. ocean 19.987 1,535
5-10 * 33.963 2.608

10-20 * 98.864 7.593
20-38 " 26.058 2.001
38-53 " 205.869 15.812
53-65 " 137.222 10.539
65-83 " 22,999 1.766
83-100 " 303.729 23.327

100-135 " 179.768 13.807

135-190 " 150.167 11,533

GT. 190 5.859 0.45

North American* 32.569 8.273

continent

South American 9.827 0.755

continent

Total 1302.042 100

*Continentz1 paths in southeast Asia are included in

this grouy.

233.
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Fig. 6.2. Envelopes of Rayleigh wave phase velccity predicted
by model S21P for the central Pacific. Circles are data
éoints, which are calculated as a weighted average of
‘pure path' velocities (Forsyth, 1975, 1977) using the

magnetic anomaly map of Pitman et al. (1974;.
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6.3. Rayleigh wave group velocity for the central
Pacific. Data points are calculated as a weighted
average of 'pure path' group velocities (Fossyth,
1975, 1977) using the magnetic anomaly map ol

Pitman et al. (1974).
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Table 6.3. Ages of Marginal Basins in the Facific

Area

Central Basin Fault,
Philippine Sea
Southwest Philippine Basinl

Northeast Philippine Basinl

Lau Basin2

Coral Sea Basin3

New Hebrides Basin3

South Fiji Basin®

Age Range
m.y.

49-43

49-53
49-53
0-3.5
60-65
45-52

28-35

238.

Magnetic Anomaly

17

21

21
1-2

24-26

18-21

Ja

1. Sclater et al., 1976.
2. Weissel, 1977.

3. Weissel et al., 1977.

4., Watts and Weissel, 1977.
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6.2 Inversion: a. Love waves in western North America

"The starting model for calculation of partial
derivatives is shown in Figure 6.4. The model was chosen
so that the real part (f,p) satisfies the real (elastic)
inverse problem for the dispersion data in Figure 6.5 and
the imagina-y part (Q”!) satisfies the imaginary (o1 only)
inverse problem for the attenuation data in Figure 6.6.
The velocity-density model shares features with models of
Alexander (1963), Anderson and Julian (1969), Kovach and
Robinson (1969) and Biswas and Knopoff (1974). The density
model in Figure 6.4 remains fixed and real in the inversion
process since phase velocity is generally more sensitive to
changes in ﬁ’than in P and since inertial losses are

neglected. The starting o1

model for the constant-Q
inversion is from Lee and Solomon (1975) and from Chapter
II. The starting Q'1 models for inversion using a power
law dependence of Q on frequency are given in Table 6.4.
The startinrg Q-1 model for inversion using relaxation
mechanisms after Solomon (1972a), is also shown in Table
6.4.

For purposes Qf calculating partials, the equivalent
flat model to that in Figure 6.4 was divided into 28
homogeneous layers and an underlying half-space.

The diagonal elements (Bc%/aﬁl = 3c%/4ﬁ3) in the

partial derivative matrix in equation (5.5) are comparable
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Fig, 6.4. The initial model of density, shear wave velocity
and shear attenuation for the inversion cf Love wave

data in western North America.
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Fig. 6.5. Love wave phase velocity, western North America.
Observations are shown by circles; vertical bars
represent standard deviations. The envelope (solid

lines) is that associated with the extremal earth

model bounds from inversion S4,
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Fig. 6.6. Love wave attenuation, western North America.
_Circles are observations, vertical bars represent
standard deviations. The solid lines represent the
envelope associated with extremal earth models for

inversion S1, the dashed lines for S4.
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to those determined by many workers for separate inversions
of phase velocity and 0°1; these partials are shown for
selected frequencies in Figure 6.7. The ‘off-diagonal’
elements (3c§/%52 = - 3c§/qﬁ1) have a more complicated sign
structure, as shown in Figure 6.7. For Love waves with
periods between 25 and 80 sec, the sign of acl/qﬂz changes
at 60 to 80 km depth. Thus the phase lag due to anelasticity
above that depth would give a decreasing phase velocity for
increasing attenuation (acl/455<0) whereas below such a
depth the phase advances with increasing Q'l(acl/aﬂ3>0).
For shorter periods (T < 20 sec), there is an additional
zero crossiag at about 20 km depth. These sign changes are
closely related to the phase structure of the displacement-
depth function as described by Schwab and Knopoff (1971).

An impcrtant consequence of the sign structure of
acl/aﬁ; in Figure 6.7 is that quite different ﬁg(ofl) models
can produce comparable changes in the dispersion curve
because of trade-offs between the contributions from
different derth intervals.

Resolution analysis was conducted as described in
section 5.4. The optimal averaging kernels Ekj obtained by
minimization of Ek.in equation (5.16) are shown in Figure 6.8a
and 6.8b for five layers. The vertical depth resolution
can be defined as the width of the peak where the value of

the approximate delta function is close to unity (20.8).
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Fig. 6.7a. Selected partial derivatives of the real part of
Love wave phase velocity with respect to the real part
of shear velocity (3cy/3fj, solid lines), and the
imaginary p;rt (acl/qﬂz, dashed lines) per unit layer
thickness for the initial model in Figure 6.4. The
partials shown are for frequency-independent Q! at
the frequency indicated; for frequency-dependent o1
relations the partial derivatives have a similar
structure. Discontinuities in the partials occur at

discontinuities in the initial model.
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Fig. 6.7b Selected partial derivatives of the real
part of Rayleigh wave phase velocity with respect
to the imaginary part of shear velocity
( c?/qﬁa, solid lines), and the imaginary part
of compressive wave velocity ( c?/alz, dashed

lines) per unit layer thickness for the initial

model in Table 6.9. The partials shown are for

1

frequency-independent Q- at the frequency

1 relations

indicated; for frequency-dependent Q~
the partial derivatives have a similar structure.

Discontinuities in the partials occur at

discontinuities in the initial model.
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For comparison, separate 'one variable' cases are drawn in

the same figure. The model standard deviation for the two

Q
a unit layer thickness, where the subscripts ﬁ’and Q denote

cases are given as Cwb, O}% (or 0, , Ob ), calculated for
. ° s

shear velocity and Q"l and the subscripts o and s denote
separate inversion and simultaneous inversion, respectively.
Based on the resolving lengths of the averaging kernels, a
five-layer earth was adopted for the inverse problem. The
mid-depths of each layer are aporoximately those shown in
Figure 6.8.

The inversion scheme follows the set theoretical
approach of Lee and Solomon (1975) and of Chapter II.
Envelopes in model space of shear velocity and shear
attenuation are determined from the data set and associated
error estimates by linear programming. The reference
frequency for all inversions is 1 Hz. The envelopes for
shear velocity ﬂ and attenuation Qﬂ'l are given in Tables
6.5 to 6.8 for a dispersion model (S1) with Q independent of
frequency, for models (S2 to S4) with Q varying as a power
of the frequency, and for a model (S5) based on a super-
position of shear relaxations. The relaxation times,
relative relaxation strengths, and depth intervals for
model S5 are as in Table 6.4 and remain fixed during
inversion. (The S class of models all result from

simultanecis inversion; an E class consists of mndels
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TABLE 6.8 Envelopes of shear velocity and shear
: ©attenuation for simultancous inversion for
Solomon [1972a)-type relaxation model,

, . Layer 8 + km/sec 100/0g

: . £=0.01Hz nuan max min max
; . 2 3.263 3.416 0.0 0.537
| 2 3.715 - 4.261 0.0 0.269
f 3. 4.109  4.697 0.0 0.213
4 3.816 4.430 1.218 4.718
5 4.615 5.147 0.268 1.313
£f=0.1 Hz .
1 3.271 3.428 0.0 0.537
2 3.717 . 4.264 0.0 0.250
3 4.112 4.701 0.0 0.213
4 3.880 4,449 0.210 0.814
5 4.645 5.177 - 1.054 5.170
f=1 Hz '
1 3.283 3.441 0.0 0.537
2 3.720 4.267 0.0 0.263
3 4.115 4.704 0.0 0.213
! 4 3.889 4.450 0.145 0,562
5 4.664 5.196 0.171 0.839

e et g . - - s o o - -




257.

Fig. 6.8. Resolving kernels for shear wave (a) phase
velocity and (b) attenuation at selected depths (arrows)
at the reference frequency of 1 Hz. Model standard
deviations are shown at the right for both simultaneous
(S) and separate (0) inversion results, shown as solid

and dashed lines, respectively.
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resulting from separate inversions). The corresponding
envelopes in data space are illustrated for some of these
models in Figures 6.5 and 6.6. As with all extremal
inversions of this sort, the envelopes include all
acceptable models but not every model falling within the
envelopes is acceptable.

In general, both £ and Qﬂ'l (except for model S1)
are functions of frequency. The intrinsic dispersion for
ﬁ’ is very sensitive to the assumed frequency denendence of
93—1' The effect of the frequency dependence on the
envelopes for [ and 93'1 are illustrated for two models in
Figures 6.9 and 6.10.

The result of weighted least-square inversion (Lee and
Solomon, 1975) on the same data set is shown ir. Figure 6.11.
Theﬂ and Qﬂ-l profiles (S11) are 'best' models in the least
squares sense for the layering shown. The initial model for
the inversion was chosen from S1 by averaging two extreme
models which have no 1;w velocity zone. Note that the
presence of a modest low velocity zone in model S11 does
not depend on a low velocity zone in the startiny model.

b. Love and Rayleigh waves in western North Amevica

The starting models for calculation of partial

derivatives in this case are listed in Table 6.9 for Q

independent of frequency. The models for ﬂ and Qﬂ'l are

taken fronr the results of the previous section and are
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Pig. 6.9. Envelopes of shear wave velocity and attenuation,
models S1 and El. Envelopes of Sl are shown at three
differeat frequencies. Long-dashed lines represent
envelopes df El, solid lines are for Sl at 0.0l Hz,
short-dashed lines for S1 at 0.1 Hz and dot-dashed

lines for S1 at 1 Hz.
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Fig. 6.10. FEnvelopes of shear wave velocity and attenuation,
models S4 and _El. Envelopes of S4 are shown at three
different frequencies. Long-dashed lines represent
envelopes of El, solid lines are for S4 at 0.01 Hz,
short-dashed lines for S4 at 0.1 Hz and dot-dashed

lines for S4 at 1 Hz.
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Fig. 6.11. 'Best' fitting earth models from weighted
least-square inversion. Model Sll1 is from simultaneous
inversion, model QCll is derived from the technique of
Anderson et al. (1977). The modeis are shown at the

reference frequency of 1 Hz.
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Table 6.9: Starting model for inversion of combined Love
ané Rayleigh phase velocity and attenuation in
western North America.

Depth, km ﬂ ., km/sec a , km/sec p, g/cm3 100/Qﬂ ‘]
0-2 1.72 4.00 2.21 .32 !
2-13 3.58 €.00 2.80 .32
13-21 3.58 6.20 2.80 .32
21-45 3.96 6.50 3.25 .13
45-64 4.54 ©7.619 " 3.40 .13
64-84 4.54 7.615 3.40 .13
84-94 4.48 7.615 3.45 5.926
94-128 4.49 7.619 3.45 5.926
128-160 4.49 ©.622 . 3.45 5.926
> 160-180 5.266 7.90 3.50 2.96
t 180-220 5.266 8.23 3.50 2,96
220-260 5.266 8.25 3.50 2.96
260~300 5.266 8.27 3.50 2.96
: 300-350 5.26¢€ 8.43 1,50 2.96

© 5.266 8.53 3.90 2.96
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determined by averaging the extreme models of / and Qﬁ'l

for each case of a given fracvency dependence of %8' The
initial density model is taxen as in Figure 6.4 and is
varied (but remains real) ir the inversion process. The
P-wave velocity is chosen t« "ave features similar to Cll
model of Archambeau et al. _:69) and is held fixed since
phase velocity is least sen;  :ive to changes in (I among
(Cl,ﬂ,P) and thus the resolution of the inverse problem is
poor ford., Because of the large uncertainties in measured

Q~l

, we will assume that loss=2s under purely compressive
stress are negligible, i.e, ta} = 4/3(ﬁ9ﬂ)20ﬁfl. Finally,
a 2 km sedimentary layer has been added to improve the fit
for Rayleigh wave phase velocity.

The 'off-diagonal’ elerents of the partial derivative
matrix for Rayleigh waves, f'%/%ﬂz, are an order of
magnitude smaller than thos- for Love waves (Figure 6.7b).

In other words, the differer-e between simultaneous i-version
and . the data corrected Andd -son-Hart treatment is less
significant for Rayleigh waves than for Love waves. However,
the advantage of simultaneous inversion still remains because
the changes in the 0~ model itself are sensitive to the
result of the velocity model inversion.

Resolution analysis was conducted as before. The
optimal averaging kernels Ekj for both Love and Rayleigh

waves are shown in Figures 6.12 for five layexs. During
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6.12a. Resolving kernels for shear velocity at
selected depths (arrows) at the reference frequency
1 Hz, using both Love and Rayleigh wave data in

western North America. Model standard deviations are

shown at the right.
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6.12b. Resolving kernels for shear attenuation at
selected depths (arrows), using both Love and Rayleigh
wave data in western North America. Model standard

deviations are shown at the right.
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inversions, the velocities and density in the top
sedimentary layer and the half space have been fixed. As
in the previous section, the reference frequency for inversion
is chosen at 1 Hz and a 5-layer model is adopted. The
envelopes of shear velocitywﬁ, attenuation Qﬂ’l, and density
p are given 1in Tables 6.10 and Figure 6.13 for a dispersion
model (S31W) with Q independént of frequency, and for models
(S32W, S33W) with Q varying as a power of the frequency.
The corresponding envelopes in data space are illustrated
for these models in Figures 6.14, 6.15, 6.16 and 6,17,
c; Love and Rayleigh waves in east~central North America
The starging models of d,f ,f and Qﬁ'l are listed in
Table 6.11. The models of A, f and P are adapted from the
results of McEvilly (1964) and the Qﬁ-l model for the
constant-Q inversion is from Lee and Solomon (1975) or from
Chapter II, The initial model qﬁ’l for inYersion using a
power law dependence of Q on frequency is chosen to be an
acceptable solution to the separate Q inversion. The
averaging kernels Ex from resolution analysis for both
Love and Rayleigh waves are shown in Figures 6.18, for

I

five layers. The envelopes of shear velocity ,8
1

attenuation Q, ~ and density p are given in Tables 6.12

i

and Fiqure 6.19 for a dispersion model (S31E) with Q

independent of frequency and for a model (S32E) with Q

i
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Fig. 6.13. Envelopes of shear velocity and shear attenuation,
at a frequency of 1 Hz, and density for models S31W,
S32W and S33W. Solid lines represent envelopes of
S31W (V= o), short~dashed lines are for S$32W (v = 1/5)

and long-dashed lines are for S33W (v= 1/2).
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Filg. 6.14, Love wave phase velocity, western North America.
Observations are shown by Circles; vertical bars
represent standard deviations. The envelope (solid
lines) is associated with the extreme earth wmodel

bounds from inversion S31W. Open circles are incompatible

data for this inversionm.
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| Fig. 6.15. Rayleigh wave phase velocity, western North
America. Observations are shown by circles; vertical
bars represent standard deviations, The envelope
(solid lines) is associated with the extreme earth
model bounds from inversion S31W. Open circles are

incompatible data for this inversion.
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Fig. 6.16. Love wave attenuation, western North America.
Circles are observations; vertical bars represent
standard deviations. The solid lines represent the
envelope associated with extremal earth models for
inversion S31W. Open circles are incompatible data

for this inversion.
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Fig. 6.17. Rayleigh wave attenuation, western North America.
L ‘ ' Circles are obse}vations; vertical bars represent
standard deviations. The solid lines represent the
envelope associated with extremal earth models for

i inversion S31W. Open circles are incompatible data for

this inversion.
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Fig. 6.18a. Resolving kernels for shear velocity at
selected depths (arrows) at the reference frequency
1 Hz, using both Love and Rayleigh wave phase velocity
and attenuation .in east-central North America. Model

standard deviations are shown at the right.
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Fig. 6.18b, Resolving kernels of shear attenuation at
selected depth (;rrows) at the reference frequency 1 Hz,
using both Love and Rayleigh wave data in east-central
North America. Model standard deviations are shown at

! the right.
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Fig. 6.19. Envelopes of shear velocity and shear,
attenuation at a frequency of 1 Hz, and density for
models S31E and S32E. Solid lines represent envelopes

of S31E (V= o), and dashed lines are for S32E (V= 1/2).
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Table 6.10. Envelopes of shear velocity and shear
attenuation at 1 Hz and density; simultaneous

inversion results of Love and Rayleigh wave

phase velocity and attenuation in western
North America.

Layer Depth minimum ﬁ, km/sec maximum E, km/sec
no. (km) S31w S32W S33w S31W s32w S33W
2 2-21 3.527 3.529 3,533 3.492 3.621 3.637
3 21-45 3.897 3.886 3.812 4.012 4.052 4,029
4 45-84 4,382 4.259 4.293 4,583 4,549 4,690
5 84-160 4.105 4.012 -3.823 4.463 4.412 4,263
6 160-350 4.782 4.750 4.702 5.500 5.500 5.500
Layer Depth minimum 100/%g maximum IUO/QA'
no. (km) _S31W S32wW 33w S31W S32W S33wW
2 2-21 0.274 0.148 0.051 0.490 0.282 0.118
3 21-45 0.059 0.0 0.0 0.250 0.149 0.10S
4 45-84 0.0 0.0 0.0 0.447 0.137 0.087
5 84-160 4,200 2.000 0.453 5.33 2,337 0.783
6 160-350 1.350 0.119 0.084 3.64 0.782 0.860
Layer Depth minimum O, g/cm3 maximum pQ, g/cm3
no. (km) S31w S32wW S33w S31w S32wW S33w
2 2-21 2,807 2.846 2.850 2,900 2,90 2.90
3 21-45 3.070 3.042 3.000 3.300 3.30 3.30
4 45-84 3.200 3.200 3.200 3.434 3.50 3.50
5 84-160 3.200 3.200 3.200 3.491 3,441 3.50

et - —
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Table 6.11. Starting model for inversion of phase
velocity and attenuation in east-central
North America (case V= 0)

Depth, km B, km/sec d , km/sec p, g/c:m3 100/03

0-11 3.5 6.1 2.9 0.1
11-20 3.68 6.2 ' 2.9 0.1
20-38 3.94 6.4 2.9 0.1
38-62 4.75 8.15 3.3 0.1
62-102 4.61 8.20 3.3 0.1

102-135 4.45 8.20 3.4 0.1
135-212 4.45 8.20 3.4 2.3
212-350 4.45 8.20 3.4 2.3

oo




Envelopes of shear velocity and shear

attenuation at 1 Hz, and density in east-

central North America

Table 6.12.
Layer Depth
no. (km)
1 0-38
2 38-82
3 82-134
4 134-350
Layer Depth
no. (km)
1 0-38
2 38-82
3 82~134
4 134-350
Layer Depth
no. (km)
1l 0-38
2 38-82
3 82-134
4 134-350

Minimum f, km/sec
S31E S32E

3.684 3.659
4.557 4.478
5.092 4.719

5.200 5.147

Minimum 100/96

S31E S32E
0.165 0.037
0.0 6.0

3.056 0.241
0.182 0.036

Minimum P.g/cm3 '

S31E  S32E
2.896 2.895
3.200 3.000
3.200 3.200
3.600 3.600

Maximum 3, km/sec
S31E S32E

3.692 3.666
4.594 4.513
5.321 4.890
5.500 5.500
Maximum 100/q6 .
S31E S32E
0.263 0.055
0.222 0.048
5,630 0.831
3.846 0.364
Maximum O, g/cm3
S31E S32E
2,900 2.900
3.241 3.010
3.327 3.220

3.800 3.800

292.
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varying as a power of the frequency (v=1/2). The corresponding
envelopes in data space are illustrated for these models in
Figures 6.20, 6.21, 6.22 and 6.23.
d. Rayleigh waves  'in the central Pacific

The starting models of d.,ﬂ +f and QB"I are listed in
Table 6.13. The starting model of the crust is modified
from the 'standard crustal section' of Forsyth (1975a), in
which 5 km of water layer, 0.2 km of sedimentary layer and
6.8 km of crustal layer are assumed. For the starting model
of the mantle, the density is 3.4 - 3.5 g km3, the S-wave
velocity f is 4.35 km/sec in the LVZ (50-220 km) and 4.60
km/sec in the high velocity 1id. P wave velocities are
basically from the assumption of a Poisson solid, O ~ l.ﬂﬂ
(<220 km depth) and @ ~1.8f (>220 km depth). The starting
model for Qﬂ-l is taken from Mitchell (1976).

No extensive test for the frequency dependence of Q has

1 data are relatively poor. The

been performed since the QR-
averaging kernels Exy for Rayleigh waves are shown in

Figure 6.24 for four layers. The envelopes of shear velocity
[?and shear attenuation q8—1 are given in Table 6.14 and in
Figure 6.25 for a dispersion model (S21P) with Q independent
of frequency. The corresponding envelopes in data space are
illustrated for these models in Figures 6.2 and 6.26.

Dotted lines in Figures 6.25, 6.2 and 6.26 are the averaged

best model and its predicted data, respectively.

L
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Fig. 6.20. Love wave phase velocity, east-cential North
America. Observations are shown by circles; vertical
bars represent standard deviations. The envelope is
associated with the extreme earth model bounds from
inversion S31E. Open circles are incompatible data

for this inversion.
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‘Fig. 6.21. Rayleigh wave phase velocity, east-central North
America. ObserQations are shown by circles; vertical
' pbars represent standard deviations. The envelope is
associated with the extreme earth model bounds from

inversion S31E., Open circles are incompatible data for

this inversion.
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6.22. Love wave attenuation, east-central North
America. Circles are observations; vertical bars
represent standard deviations. The solid lines
represent the envelope associated with extremal earth
models for inversion S31E. Open circles are

incompatible data for this inversion.
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Fig. 6.23. Rayleigh wave attenuation, east-central North
Aﬁerica. Circles are observations; vertical bars
represent standard deviations. The solid lines
represent the eﬂvelope associated with extremal earth

' models for inversion S31E. Open circles are

%

incompatible data for this inversion.
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Fig. 6.24a, Resolving kernels for shear velocity at
selected depths (arrows), using Rayleigh wave data in

the central Pacific. Model standard deviations are

shown at the right.
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Fig. 6.24b. Resolving kernels for shear attenuation at
selected depths (arrows), using Rayleigh wave data
in the central Pacific. Model standard deviations

are shown at the right.
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Fig. 6.25. Envelopes of shear velocity (at 1 Hz) and
attenuation for the central Pacific, model S521P.

Solid lines represent envelopes of S21P.
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Fig. 6.26. Rayleigh wave attenuation, central Pacific circles
are observations; vertical bars represent standard
deviations. The solid lines represent the envelope
associated with extremal earth models for inversion

S21P. Open circles are incompatible data for this

inversion.
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Table 6.13, Starting model for the central Pacific
L
Depth, km f , km/sec a . km/sec p, g/cm3 100/03
0-5 0.0 1.52 1.03 0.80
5-5.2 1.0 1.70 2.20 0.80
5.2-12 3.76 6.53 . 3.00 0.60
‘ 12-16 4.60 8.17 3.34 0.60
16-27 4.60 8.17 3.34 0.60
* 27-37 4,60 8.17 3.34 0.60
: 37-47 4.60 8.17 3.34 0.60
47-57 4.35 7.70 3.40 0.50
57-67 4.35 7.70 3.40 0.50
67-87 4.35 7.70 3.44 1.C0
87-107 4.35 7.70 3.44 1.00
107-127 4.35 7.70 3.44 1.20
127~-147 4.35 7.70 3.44 1.20
147-167 4.35 7.70 3.44 1.00
167-187 4.35 7.70 3.44 1.00
187-207 4.35 7.70 3.44 1.00
207-227 4.35 7.70 3.44 1.00
227-262 4.60 8.49 3.50 0.60
262~302 4.60 8.49 3.50 0.60
302-352 4.80 8.81 3.50 0.40
352-402 4.80 8.81 3.50 0.40
0o 5.00 9.00 3.76 0.40
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Table 6.14. Envelopes of shear velocity and shear
attenuation at 1 Hz in the Pacific

Layer no. Depth ‘(km) Minimum /¢ Maximum /9
4 12-59 4.542 4.571
5 57-107 4.195 . 4.350
€ 107-227 4.212 4.516
7 227-402 4.50 5.00
Layer no. Depth (km) Minimum 100/?8 Maximum 100/%9
4 12-57 0.413 0.44
5 57-107 1.295 1.742
6 107-227 0.90 1.695

7 227-402 0.404 2.00




6.3 Discussion: a. Love waves in western North America

An important result of the simultaneous inversion is
that the low velocity zone and the low Q zone coincide
beneath western North America, at least for the surface
wave frequency band (Figures 6.9 and 6.10). The mechanisms
that contribute to ﬁ decreased shear wave velocity must
also account for enhanced attenuation in shear,

A second immediate conclusion from these inversion
results is :that the envelopes of earth models derived by
simultaneous inversion of phase velocity and attenuation

are not identical to the envelopes of g and QB 1 models
obtained from separate inversion of velocity and Q_l data
(Figures 6.9 and 6.10); see Appendix V. While the envelopes
show a broad similarity for the two approaches, there are
significant differences, particularly within depth intervals
over which Q-1 and the accompanying intrinsic dispersion are
relatively large. At short-period body wave frequencies,
the shear wave velocities below 80 km depth for both
individual earth models and envelopes of models are
substantially higher than those determined without regard
for anelasticity.

The simultaneous inversion results in two improvements
for the attenuation problem over inversion of Q"1 data alone.
-1

One improvement is in the resolution in Q8

As shown 1n Table 6.15 for frequency independent Q models,

versus depth.
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the bounds on Qé-l in the low Q zone are narrower by
roughly a factor of 2 in Q'l for model S1 than for model E1l
obtained by inversion only of Love wave attenuation data.
The second improvement is in the fit of predicted and
observed QL-1 data, especially in the period range 20 to
25 sec where observations of nearly zero QL_1 occur in the
data set for western North America and commonly in other
areas as well (e.g. Tsai and Aki, 1969). 1In Lee and Solomon
(1975), the data in this period range were concluded to be
incompatible by set theoretical inversion. Such an apparent
incompatibility does not arise in the complete formulation
of complex earth model and observations.

It is of interest to compare the simultaneous
inversion of this paper with the approach recently used by
Anderson et al. (1977), Anderson and Hart (197€) and Hart
et al. (1976, 1977). The technique adopted by these workers
has been to correct the real part of their cdata for the
effect of anelasticity, using equation (4.8) and the
Anderson and Archambeau (1964) theory, and then to invert
their corrected (real) data to obtain an elastic (real)
earth model. The method of Anderson, Hart and others is
not mathematically équivalent to the complete anelastic
earth problem, equation (5.8); a comparison of the two
approaches is given in Appendix V. Because of the complicated

dependence of acl/asz on depth (Figure 6.7a), and because of




the significant coupling of 3:1/382 with anelastic dispersion,

the two approaches do not yield idenéical results, particularly

when the observational frequencies are far from the reference

frequency or when the observational frequency band is wide

{(see Appendix V). For some earth structures, the two sets of

results can differ substantially.

A comparison of the two inversion approaches for the
Love wave data set for western North America illustrates

some of the differences in their predictions. The bounds

on B and Qé.l in the earth for Sl are compared in Table 19
with those for model QCl (for Q-corrected), obtained by
first correcting the observed phase velocities following
Liu et al. (1976) and Anderson et al. (1976) for the Q1
model of Figure 6.4 and then performing an inversion of the

corrected real data. The 'best' model for the two different

approaches (S11 and QCll) characterize well the differences

between the two techniques (see Figure 6.1l1l). The

Anderson-Hart approximation yields a monotonically increasing

velocity structure while the simultaneous inversion yields a
B model with a slight low velocity zone.

All of the proposed dispersion;attenuation relations lead
to earth models that can fit the phase velocity and Q-l data,
but the various models have very different frequency
dependences. The intrinsic dispersion in B8 within the low
Q zone varies fram about 10 percent for S1 to 1 percent for

S5 between frequencies of .01 and 1 Hz. For frequency




independent Q, the need for a low velocity zone disappears

for frequencies near 1 Hz and above, though lew velocity
zones for shear waves are required at that frequency for the
other dispersion-attenuation relations. The frequency
dependence of Q1 is also obviously different for the
various dispersion-attenuation relations, varying from
constant tn a slowly decreasihg function of frequency to a
complicated frequency dependence for relaxation models.

The inversion in this thesis for relaxation model S5 is of
course not general because only a few isolated relaxation
peaks and only fixed relaxation times and relative relaxation
strengths were considered. The surface wave data alone do
not contain enough independent‘information to regard the
spectrum of relaxation times and relaxation strengths to

be free parameters that vary with depth.

Broad band observations of body wave vglocities and
amplitudes offer the greatest promise for narrowing the
range of possible dispersion-attenuation relations.
Probably, a ccnstant Q model can be discarded at present,
at least for frequencies near 1 Hz and above, because of
the prediction of such a model that a low velocity zone
in western North América may disappear at such frequencies,
clearly untrue (Archambeau et al., 1962), and because the
lateral variation in umplitudes predicted for short period

P and S waves from Q" ! models fit to long period surface




wave and body wave data are much larger - than obscrved

(Solomon et al., 1970; Der et al., 1975). To discriminate
among the other proposed models or to test more complicated
relaxation models, phase and amplitude spectra of P and §
waves that have passed through the low Q, low velocity

zone should ideally be obtained over a frequency band
spanning .001 to 10 Hz.

When such tests are conducted, it will be important to
explore fully the assumption that the measured amplitude
losses for surface waves are due only to anelasticity. 1If
a scattering mechanism is an important contributor to the
losses, then both the inferred QB-l structure and the
associated dispersion in 8 may differ considerably from the
results reported here.

b. Love and Rayleigh waves in western North America

The most serious problem here may be SV/SH anisotropy
in western North America. Love and Rayleigh wave phase
velocities arce incompatible for almost the entire common
frequency range. Also as indicated in Chapter II, Rayleigh
wave attenuation QR‘“l in the period range 35-40 seconds
shows disagreement with Love wave attenuation QL-l. This
is not a consequence of simultaneous inversion but appears
to be a consequence either of anisotropy or of some

interference effects in the waveforms analyzed. The
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measurements of Rayleigh wave phase velocity in Solomon
(1971) are comparatively lower than other reported
measurements in the western United States (Biswas and
Knopoff, 1974). However, if we look at the contour map of
P, velocity in western United States (Archambeau et al., 1969)
the path between LON and TUC lies in a low P, veiocity 'valley'.
To fit the phase velocity curve for Rayleigh waves, a LVZ
seems to be necessary contrary to the result of separate
Love wave inversicn in the previous section. This particular
path may be complicated by multiplying effects and/or mode
conversions.
c. Love and Rayleigh waves in east-central North America
The simultaneous inversion results for east-central
North America give a thick lithosphere and a monotonically
increasing velocity model at 1 Hz. A LVZ may not be required
ﬂ . at 1 Hz. However, a LQZ is probably present at depths
greater than 130 km.
\ A second result of simultaneous inversion is that the
S-wave velocities in other than the crust are increased
. considerably and density is decreased compared to the
results of separate inversion of phase velocity. At the
same time, for Q independent of frequency, QB-l in the
asthenosphere seems to be greater than predicted by the
results of separate inversion.

The frequency dependent QB"l models are also
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satisfactory for predicting observations. To discriminate
among the possible dependences of Qé-l, more precise

measurements of Q"1

must be made,

Similarly, as described in the previous section, the
data incompatibility in some period range which occurred in
the separate inversion for Q"l does not arise in the
simultaneous inversion. The incompatibilities which are
indicated in Figures 2.6c and d did not occur in the
simultaneous inversion.

d. Rayleigh waves in the central Pacific

The results of simultaneous inversion for ﬁ’and qﬁ°l
in the central Pacific are shown in figure 6.25. The LVZ and
10Z coincide and are extensive (60 and 225 km depth). The
lithospheric thickness is less than.in western North
America (tectonic) and east-central North America (shield).

Compared to the Forsyth's models (Table 9, 1975a;
Figure 9, 10, and 11, 1977), the result of sihultaneous
inversion, model S21P, shows a similar shear velocity
profile to 135 m.y. old ocean even though model S21P
represents 80-90 m.y. old ocean on the average. Forsyth
suggested 80-90 km as the starting depth of partial melting:
Model S21P suggests a shallower asthenosphere at 60 km depth,
which agrees with Mitchell's (1976) model. This is
probably because Q_1 profile may give a different result
from that by velocity profile. Shear velocity at depths

greater than 220km may be much higher than any of Forsyth's




\

models. Otherwise the LVZ will terminate at much shallower

depth.

Compared with Mitchell's Q model (1976), the noticeable
differences are that the LQZ may extend deeper than 220 km
and that the LQ2Z is more pronounced. The Q structure
deeper than 220 km is not resolved very well. At around

100 sec period, Mitchell's QR-l data were incompatible.
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CHAPTER VII

Conclusions

Determining the variation of anelastic properties
such as seismic attenuation within the earth's interior
both vertically and laterally can be a useful tool to
study the physical state of the earth's interior. This
is particularly true of the upper mantle, where seismic
energy absorption is highest. A precise determination of
such properties will help many seismic studies, including
those on seismic sources, path effects and seismic
discrimination. Also the anelastic properties provide
valuable hints on the tectonic history of the earth. For
example, zones of active continental-continental collision
may be characterized by unusually high attenuation such as
under Tibet (Bird, 1976). The thickness of the lithosphere,
or high-Q 1id, is closely related to lithosphere age
and deeper lateral variations may reflect sub-lithospheric
convection flow patterns.

However, we have seen several negative aspects of the
seismic attenuation studies. First, the anelastic behavior
of materials under such high temperature and pressure
conditions as in tﬁe earth's mantle is poorly known,
because such conditions are very difficult to reproduce
in the laboratory. At present we must rely mostly on

seismic data. Secondly, much of the seismic data
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available now are determined by few samples with large
uncertainties. Moreover, the seismic amplitudes often
have been subject to geometrical complications, such as
scattering, mode eonversion and multipathing effects.
Because of all these difficulties, many of the seismic
attenuation studies have produced either inconclusive
results or even physically implausible results,

One area where most such complications can be overcome
is the study of surface wave attenuation. Many advantages
of the surface wave attenuation method are reviewed by
Anderson et al. (1965). Surface wave amplitudes are often the
most prominent feature of the seismogram. The geometrical
spreading factor for surface waves can be easily corrected.
surface waves have been less subject to scattering because
of their long periods, and, most importantly, surface waves
penetrate deep into the earth's upper man<tle, where the IQ2
exists.

. The relatively long period data of surface wave
attenuation are still not free of geometrical effects, as

are discussed in section 2.6.5. For example, when a

seismic wave with wavelength 100 km travels 2000 km
distance, an inhomogeneity larger than 10 km could cause
non-negligible scattering effects. These kind of
geometrical complications have been observed by Tryggvason

(1965), 71sai and Aki (1969) and Solomon (1971).
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The contamination of seismic surface wave attenuation

measurements by such effects causes problems in the
inversion of such data. For contaminated and uncertain data,
an Ll norm type of.inversion has clear advantages compared
to L2 norm approaches (see details in section 2.3). L,

norm inversions (least-square type) have often produced

physically impossible negative o1

solutions, Lj norm
inversion, developed as the set theoretical approach,

which includes the square matrix inverse and the linear
programming technique, and applied to North America and

the Pacific in this thesis, gives a number of advantages.
The geometrical visualization of the square matrix inverse
can be useful to select the proper layering. By choosing
proper layer thicknesses, the solution domain can move into
the physically meaningful positive domain and be more
strongly focussed. A bad layering can either lead the
solution domain into the negative domain or widely spread
it\out. Also we can sort out incompatible data, defined as
data which do not contribute to build the solution domain
in Ll norm inversions, a phenomenon noted for data from

1

the minima in Q = at 20-25 second period in Solomon's data

(1971). The linear programming technique can define the
lower and upper bounds of the solution domain. Because of
the poor statistics of attenuation data, it is often not

meaningful to pursue a single best model.

The question of whether linearity of seismic attenuation
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mechanisms is justifiable is important. 1In the past,
non-linearity was considered from several aspects. First,
Knopoff (1956, 1959) argued that the observations of Q
independent of freﬁuency are incompatible with linear
mechanisms, which show a strong frequency dependence.
Second, laboratory experiments of stress-strain hysteresis
show a cusp in the hysteresis curve (non-linearity) for
strain amplitudes greater than 10 °. Beismic strain
amplitudes are small but marginal in this regard. Another
aspect of the argument comes from the fact that body
waves do not show dispersion, which is a main characteristic
of linearity.

However, Orowan (1967) and Liu et al. (1976) showed
that a band-limited superposition of linear mechanisms can
explain the first argument. Also a slight frequency
dependence, which has not been fully tested with still
largely uncertain and limited observations, could explain
a limited dispersion at short body wave periods. Efforts
to search for the effects of such body wave dispersion
should be continued. Because the second argument aéainst
linearity is marginal, we prefer to retain linearity for

the cles: computational advantages arising from the super-

position principle.

e o
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Linearity is controlled by the causality principle
as well as the superposition principle. The causality
principle, 'no signal before stimulus', requires accompanying
dispersion (anelastic dispersion) if there is absorption.
The causality principle has often been violated in seismic
studies. The assumptions of Q independent of frequency and
of perfect elasticity (no dispersioni under linearity are
incompatible.

The consequence of neglecting anelastic dispersion is
tremendous. The existing perfectly elastic earth models are
either misrepresented or cannot be compared fairly with each
other. Intrinsic dispersion of shear velocity is an
important consequence of anelasticity, particularly within
the low-Q zone beneath oceanic and tectonically active
regions. Beneath western North America, dispersion can be
as great as 10 percent over two decades in frequency,
depending on the frequency dependence of Q —l.

One of the important consequences of anelastic dispersion
is that the 'baseline discrepancy' question is resolved
{Anderson et al., 1977). Sipkin and Jordan (1975) suggested'
a 'continental bias' might be the cause of this 'base line
discrepancy'. If anelastic dispersion is considered,no
deep continent-ocean difterences are necessary.

Simultaneous inversicn is a proper approach to consider
the effect of anelastic dispersion which is a first order

correction to anelastic velocity models compared to a second
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order effect in perfectly elastic models. The simultaneous
inversion approach is formally different from the approximate
inversion scheme of Anderson and Hart (1976) and gives
different results. The differences can be amplified when

the observational frequency range is wide and/or the
reference frequency is far from the observational
frequencies. No matter how the observational frequency

band is spread, no matter where we choose a reference
frequency, a given dispersion-attenuation relationship

may be used to extrapolate models to any frequencies.

The difference between the simultaneous inversion
approach and the approximate approach of Anderson and
Hart (1976) is larger for Love waves than for Rayleigh.
waves, simply because the partial derivatives of off-
diagonal terms for Rayleigh waves are much smaller than
for Love waves (see Appendix V). However, most of the
advantages are still retained for Rayleigh waves by use of
simu}taneous inversion.

Other consequences of simultaneous inversion are that
the incompatibility in the attenuation data set decreases
substantially and the resolution in 6 -1 versus depth in
the earth is improved for a given dispersion-attenuation

relation over the separate inversion of Q"1 data alone.
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The most interesting results of the inversions are
the lateral variations of mantle structure. A distinctive
LQZ seems to exist everywhere we have data, including
western North America (tectonic), cast-central North
America (stable platform) and the central Pacific (oceanic).
However, the thicknesses of the high-Q 1id varies from
place to place: 60+20 km in the central Pacific, 80+20 km
in western North America ané 130+30 km in east-central
North America. These results are related to the differing
tectonic history of each region. 1In east-central North
America, a thick lithosphere has grown over time, and the
asthenosphere shows relatively mild attenuation as well as
the possibility of no LVZ at a frequency of 1 Hz. 1In
western North America, a thinner lithosphere with
substantially higher attenuation in the asthenosphere is
characteristic. Many authors have suspected there is
substantial partial melting in the asthenosphere of this
reéion. The excess heat necessary to produce melting may
have been related to the recent subduction of oceanic
lithosphere along western North America.

The LVZ and LQZ coincide in western North America. The
inversion of Love wave data alone shows that the assumption
of Q independent of frequency over the entire seismic band
leads to the removal of the requirement for a LVZ for shear

waves at frequencies above 1 Hz. The LVZ persists at these
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L . frequencies, however, in the results of the combined
inyersion of Love and Rayleéigh wave data. However, a
possible anisotropy problem in western North America may
have contributed to an inability to discriminate among
various dispersion-attenuation relations. In the Pacific,
the LVZ and 1LQZ coincide as in western North America. The

; Pacific shows a thinner lithosphere ( 60 km thick) but

i lower shear attenuation Qﬁfl in the asthenosphere than in

the tectonically active western North America.

Widening the period range of attenuation data, conducting
more accurate measurements of Q, and confirming or disproving
dispersion of body waves will be a good direction to pursue

answers to -'some of the questions raised by this study.
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Appendix I. Kramers~Krdnig Relations (Ref: Landau and
Lifschitz, 1960; Futterman, 1962; Papoulis,
1962)
A direct consequence of the causality principle,

Kramers-Kr8nig relations relate the real and imaginary

parts of the refractive index of the medium by integral

‘ma

transforms in the frequency domain. The causality
principle states that no signal can travel faster than

the signal velocity:

u(r,t) =0 for t < r = T (A.I.1)
veo

where u(r,t) is a displacement pulse and v, is the

signal velocity at frequencies above a cut-off frequency
W, , above which it is assumed that no absorption occurs
and thus the phase velocity is non-dispersive.

Representing the pulse by a Fourier transform,

-iw, t

ulr,t) = [° Uir,e)) e aw (A.1.2)

1

Here the displacement u(r,t) associated with seismic

waves should ke zero if t<{7T , but the Fourier component .
u(r,w) may not be zero at any time. Therefore, caﬁsality
requires that these Fourier components must be combined

in such a way that u(r,t) = 0 when t <7 . A destructive
interference for t{7 causes a frequency dependent phase

velocity in the medium (dispersion). Now we are going to
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find a way to integrate equation (A.I.2) to meet causality.
Equation (A.I.2) can be written as a superposition of
plane waves in a complex representation of the form

alr,t) = Im E(wl) eik(w,)r-iw,t

dwy (A.I.3)
where K(&ﬁ) is the complex wave number. The index of

refraction n(w,) of the medium is given as

n(wl)_= K(ml)/Ko(ml)

Ky (w)) = =&
©

where K, defines the nondispersive behavior of K at the

same frequency. Since we have assumed that no absorption

occurs above the cut-off frequency W, Im n(wc) =0

and Re n(mc) = 1.

The inversion of the integral (A.I,3) gives

ik(m,)r iwlt

-_— _ 1 - J
ulw,) e = 5= _£ u(r,t) e dt
Invoking the causality condition (A.I.1)
Blwy) etRE L L %y, et ae (A.I.4)
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Define p = t - 7
G(wl) elk(wn)r - 3% fwu(r,p+r) elw1Piwi® 4
0
Using K(wl) = n(wl)ml/v°° and T = r/v_,
T(w)) et o LT g, 00 &P gp (A.1.5)

0

where

tlwy) = wy/v_ [n(w,)-1]
Since p 20, ve define a new function ¢>(w) identical in
form with the left hand side of (A,I.5), where Wj is
replaced by a complex w, w = Wy + iwz.

if(w)r _

olw) = U(w) e 2 [T utr,pt1) el¥ 3o  (a.I.6)

0

ig(w)rx

The analyicity of e in the upper half plane of

frequency for r > o0 follows easily from (A.I.6), due to the

factor e ¥2P

. Although we do not go into 4.~ rigorous

proof here, it is not difficult to éhow that the exponent
L(w) 1itself is analytic in the upper half plane u.h.p. from
the analyticity of ei“m)r . Because of the analyticity

of ;(w), we can apply Canchy's residue theorem. Now we

can write
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L) = 2— An(w)

o«
where A4n(w) = n{w) -1
Now An(w) is analytic in the u.h.p. of frequency, so that

Canchy's residue theorem can be written as

_ 1 ® An(w)
An(w) = 7-p f_m-;:az dw (A.I.7)

where P denotes the Canchy principal value. From
eq. (A.1.7.), the expressions for the real and imaginary

parts are

1 Iw Imln (w) dw

Re an(w) = ¢ p [ = (A.I1.8)
' 1 ® Rebn(w)
ImAn(wl) == P [_Q-_W dw (A.1.9)
Since Im n(wc) = 0, Egyuation (A.I.8) becomes
Re(n(w)-1] = L p [© Imn(w) g, (A.1.10)
n o W Wy

From equation (A.I.3), since the displacement is a real
function of position and time, the crossing symmetry

relationship holds, K(w) = K.(-w)
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and subsequently, n(w) = n (-w)
Re n(w) = Re n(-w)
(A.I-ll)
Im n{w) = -Im n(~-w)
Using (A.I.11), equation (A.I.10), can be written as
Re(n(w,)} -1 =2p [° Imnlw 4 (A.I.12)
e n l - T P 0 (ﬂz- w 2 W . -
1
with the result p | wfﬁ = 0, equation (A.I.9)
- 00 1 ’
becomes,
__ 1 @ Re n(w)
Im n(w)) = - > p ]-m'_‘“:w_l_ dw (A.1.13)
Similarly using crossing symmetry relations, equation
(A.IllB) can be written as
)—-ie—“-’l j° Benlw) 4 (A.I.14)
Im n(w1 = w7 P o WTu w .I.

Equations (A.X.10) and (A.I.13) or (A.I.12) and (A.I.1l4)

are known as Kramers-Krbnig relations.
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APPENDIX II. Dispersion Relations: Frequency Domain Approach

The complex wave number K(w) can be expressed in terms

of the phase coefficient k and the attenuation coeffic ent X:

K(w) = k(w) + iX(w) (A.II.1)

The index of refraction of the medium is

K(w) _ k(w) + iX(w)
K w/v°°

(A.II.2)

where K_, v_ are the non-dispersive limits of K and v, respec-
tively, and v is the phase velocity.

Usually for the frequency-domain approach, the attenuation
coefficient X(w) is assumed to have a certain frequency

dependence.

1-y

X(w) = Cyw or Cyuw where 0 <v< 1.
Xlw) v
Therefore Imn(w) = ———
(€}
= C, or Czw-v (A.II.3)

From the Kramers-Krdniy relations (Appendix I)

Reln(w)) -1 =2,

—wdw

2_ 2

i In n(w)
0 wy

w
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¢y
Re[n(ml)J - 1 === 1m,, v=20
. (A.1I1.4)
or = Ciwl-vcot %&~, v #0

(Wwhittaker and Watson, 1962, p. 117).

The phase velocity and the reciprocal quality factor can be

written as

W) = s =
viel = ) Re n(w)
(A.I1X.5)
-1 2Xlw)v
Q " (w) = - = 2 Im n(w)

Therefore, the dispersion relations are given substituting

(A.1I1.3) and (A.II.4) into (A.I1.5). And we obtain,

C
Q-1 v=o

viw)/v, =

l-v mv v#o
___l
| 1 +C2w .cot:2

In this case n(x) = 1 because the reference non-dispersive

behavior is at infinite frequency.

2c2w"’4 vV EO

|

e mnbm il
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-1 1 v .
where Cl = Qo ’ C2 = 3 4qa (v=1)! sin %’
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APPENDIX III. Dispersion Relations: Time Domain Approach

(Lomnitz, 1957; Liu et al., 1976)

For the time-domain approach, the creep function ¢(t)
is furnished to derive dispersion relations. Generally,
the one-dimensional stress-strain relation is given by
Boltzmann's after-effect equation,

t T )
e(t) = ﬁl {a(t) + S o(1) ¢(t-1)dt} (A.IXII.1)
u -0

where Mu is an unrelaxed elastic modulus and o(t) is the given
loading stress. Since ¢ = 0 for t < 0, (A.III.)) can be

written as a convolution,

elt) = ﬁl {o(t) + o(t)*;(t)} (A.I1X.2)
u .

ukx-wt)

For a plane wave, 0 = o.e and from (A.III.l)

e(t) = EéEl {1+ of $(15eiWTdT} (A.III.3)
. u

Therefore, a complex modulus M{(w) is given as

M(w) = M /(1 + Pe()e™Tary ‘ (A.III.4)
0
From the equation of motion, pi = %%
pu? = K(w)?M(w) (A.II1I1.5)

K(ow) =w/p/HMw) '(A.III.G)

. e - eEE————
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using (A.II.1l), (A.IIX.4) and (A.III.6},

iwt yz

viw) = v /Re {1 + !ﬁa(t)e at}
0

_ 21m{ /"¢ (£) e1¥tat)
0 l(w) o 2Im M(w) _ -0

ReM(w): 4 Re{&“&(t)ei”tdt}

where v_= 0.
« u

For the case of the Jeffrey-Lomnitz law,

¢(t) = % [(1+at)V -1]

o(t) = qa(l+at)’!

Let
- > w -
I = 7 ¢(t)e1”tdt = qaf (1+at)v 1el“’tdt
0 0
Putting (l+at) = p,
: © sWp
I =gqa !p\)-lela-(p 1) _d_g
0 a
'm
~ ® - 13
=q f pv 1 e ? for g small (Jeffreys, 1975).
0

Putting k = -i(g).

a
I =qk ViK' 69“ le~kpgp

= qk-vr(v), where T'(v) is the Gamma function.
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I = qa¥w Y (-i)"VTr(v)

r i
» = qavm-ve 2I‘(v)

Therefore

vie) /v, = 1/(1+ qa’w V(v-1)1cosT)) = 1/(1 + Cu “cotH)

2qavw-v(v—l)!sin12

Q—l(w) = — 2 = 2cw” Y  for q snall,
\Y \Y mv
1 +qga’w "(v-1)!icos—

where

Ty
2

C = ga’(v-1)!sin
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APPENDIX IV. Partial Derivatives at a Reference Frequency

Using equation (5.18), partial derivatives at a reference
frequency can be given as follows. For convenience, the
symbols Bg, 82. ug, and ag are used for Bl' 82, Gyr Oy

respectively, at the reference frequency.

9C 3c
(——i).. (3§l
aeg 13 1

(A.IV.1) i

(A.IV.2)

(A.IV.3)

(A.IV.4)

(A.IV.S)

(A.IV.6)

(A.IV.7)

(A.IV.8)
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~he last steps of equation (A.IV.3), (A.IV.4), (A.IV.7),

and (.,..1V.8) are the consequence of Cauchy~Riemann relations

(5.11). From dispersion relations (4.8) and (4.10)

f % in (w/wo) for constant Q
( g, = A

‘ cot 1/2ﬂa(1-(w/wo)-v) for power law u

[ 1 for constant @
] h, = J :
; ; (w/wo)-bl for power law Q

For the case of constant Q, with the inversion at a reference

frequency, the matrix equation (5.6) for Love waves becomes

Ic 3ac \ \
((8e) ) (= — ( 88,y
381 332
. oc ac
2 2
Ac —_— —= AB
2 ). ~0 o 2
\ . Ji \ 3.‘1 332 Jij \ J “’o'j
(A.IV.9)
( d¢c., ac ac Y \
= 381 581 9+ ael h 48,
1 1 2
ac 9C ac
- 381 asl h - ael g | | 48, )
k 2 1 2 /
ij w lj




I ! 1 g+ én
98, 6 h-gé
ij ij
- To] ocC
where 8§ = -3-8—1- '5-8—1-.
2 %8

For Rayleigh waves, the matrix equation

( ! facl 801 acl acl acl ) (
Ac
1l o o o o
381 882 aal aaz 9p
Lbc 3c2 acz ac2 3c2 acz
2). o) o
1 \asl 382 aag 3ag 0 )

ij \

IR

Ag
2/, .3

(o]

(5.7) becomes

Aa
Aa

dp |

6 4
o’
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a8, \
A82
Aa
Aa

Ap
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APPENDIX V. Comparison Between Simultaneous Inversion and

the Correction Technique of Anderson and Hart

The procedure of Anderson and Hart differs in several
fundamental respects from a complete simultaneous inversion.

1) Their procedure adopts as given a Q model determined
by a separate inversion Lased on an elastic velocity model.
The adopted Q model is used to correct phase velocity (eigen-
period)data for intrinsic dispersion.

The simultaneous ;nversion takes both Q and velocity as
unknowns.

2) Their procedure neglects the contribution from 'off-
diagonal' terms in the partial derivative matrix (5.6). These
terms are usually coupled with g;r a measure of dispersion
(Appendix IV). Since g; can be large when observed frequencies
are far from the reference frequency, the contribution from
‘off-diagonal’ related terms may not be small.

We illustrate these differences with an éxample: the
problem of finding two-layer models of shear velocity and
attenuation from two observational pairs (phase velocity and
attenuation), under the assumption that Q is independent of

frequency. For the Anderson-Hart Q-correction procedure

A B (ABI'ABZ)O (Acl'Acz)m

= (A.V.l)
C D (Aslvﬁﬁz)q (Acl.Acz)n

R R SN
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where (ABI'ABZH are the model pairs for the j-th layer and

' (Acl.Acz)iare the i-th observational pairs. A, B, C, D are( ,
3{c
1’'m

3(8))

an abbreviated notation for partial derivatives; e.g. A =

" For the simultaneous inverse problem, from Appendix IV.

( - ) ( \ ( \
A 1 gm-§ . 1 g +8 88, [ac,
[ 1+gm6 -6 1-g. 6 AB, \Ac2

m

: P

. ( 1 gn+6 ) o ( 1 gn—G ) (Aal) (Acl)
-6 1-g 6 § l+g & JL AB,) ac,

\ q \ n/

ac éc

1 1l
where § = —/ —=.
ABZ ABl

simplicity, although it may vary in different layers and

Here 8§ is used as a single value for
different frequencies. Thus

(AB)) o = (88))_ oo + g F ((Ac,);) + g AgSF,((Ac,) )

1'p,S p.QC
+ géF3((4cy) ) + Bg8F, ((Acy);) + O(8)

~ . (A.V.2)

' (682)p's = (Aaz)p’oc + GAgGI((Acz)i) + SGz((Acl)i) + 0(6’\

where '
89 = 9, - 9,
F, ((acy) ) = ((ac,) Dg,)/(AD-BC)
Fy((acy)y) = 2 ((ac,) A - (&c,y) C} BD/(AD-BC)

P, ilac,),)

((Acl)mb - (Acl)nB)/(AD—BQ)
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F = - -
4((8cy);) = ((Ac)) D - (Ac,) B)/(AD-BC)

G, (lacy) ;) = 2 {(Acy) A - (&¢,) C} BD/(AD-BC)
Gy((8cy) ) = ((8cy) B - (Acy) D)

and where S stands for simultaneous inversion and QC stands
for the Anderson-ﬂar£ Q correction technique. Similarly
‘°81'°32’q can be computed. The correction terms on the
right-hand side of equation (A.V.2) are 0{(g), O(gaAgé), O(gé),
0(agd8), etc. The §'s are typically 0.05 (see Figure 6.7a) and
and g's are 2~3 in our problem. ¢ can be larger when the
obse:vatioﬁgi frequencies are even further from the reference

frequency, taken as 1 Hz in this work. Ag is 1.1 for the

Love wave data of western North America if Q is constant; it

can be larger when the observational frequency band is wider.
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